Recall that if \(f(x, y) \) is a function of two variables, then its **gradient** is the vector field \(\nabla f(x, y) = (f_x, f_y) \). A standard fact is that the gradient is perpendicular to the curves defined by \(f(x, y) = C \) where \(C \) is a constant.

Problem 1. Let \(f = u + iv \) be an analytic function in a domain \(U \).

(a) Use the Cauchy-Riemann equation so show that at each point of \(U \) that
\[
\|\nabla u\| = \|\nabla v\| \quad \text{(that is at any point of \(U \) the gradients of \(u \) have the same length)} \quad \text{and that \(\nabla u \) and \(\nabla v \) are always perpendicular. (That is the dot product \(\nabla u \cdot \nabla v = 0 \).)}
\]

(b) Use that \(\nabla u \) and \(\nabla v \) are always perpendicular to explain why for any constants \(a \) and \(b \) the curves \(u = a \) and \(v = b \) meet at right angles. (At least if the curves meet at a point where \(f'(z) \neq 0 \).)

(c) Let \(f(z) = z^2 \). Find \(u \) and \(v \) and graph some of the curves \(u = a \) and \(v = b \).

Shortly we will need to know how to expand some rational function into series. Recall that if \(w \) is a complex number with \(|w| < 1 \) that
\[
\frac{1}{1-w} = 1 + w + w^2 + w^3 + \cdots = \sum_{k=0}^{\infty} w^k. \tag{1}
\]

Problem 2. If \(z, z_0 \), and \(\zeta \) are complex numbers with \(|z - z_0| < |\zeta - z_0| \) show that
\[
\frac{1}{\zeta - z} = \frac{1}{(\zeta - z_0) - (z - z_0)} = \left(\frac{1}{\zeta - z_0} \right) \left(\frac{1}{1 - \left(\frac{z - z_0}{\zeta - z_0} \right)} \right) = \sum_{k=0}^{\infty} \frac{(z - z_0)^k}{(\zeta - z_0)^{k+1}}.
\]

HINT: Start with
\[
\frac{1}{\zeta - z} = \frac{1}{(\zeta - z_0) - (z - z_0)} = \left(\frac{1}{\zeta - z_0} \right) \left(\frac{1}{1 - \left(\frac{z - z_0}{\zeta - z_0} \right)} \right)
\]
and use (1).

Problem 3. If \(z, z_0 \), and \(\zeta \) are complex numbers with \(|\zeta - z_0| < |z - z_0| \) show that
\[
\frac{1}{\zeta - z} = \frac{-1}{(z - z_0)} \left(1 + \left(\frac{\zeta - z_0}{z - z_0} \right) + \left(\frac{\zeta - z_0}{z - z_0} \right)^2 + \left(\frac{\zeta - z_0}{z - z_0} \right)^3 + \cdots \right) = -\sum_{k=1}^{\infty} \frac{(\zeta - z_0)^{k-1}}{(z - z_0)^k}.
\]

HINT: This time start with
\[
\frac{1}{\zeta - z} = \frac{1}{(\zeta - z_0) - (z - z_0)} = \left(\frac{-1}{z - z_0} \right) \left(\frac{1}{1 - \left(\frac{\zeta - z_0}{z - z_0} \right)} \right)
\]
and use (1).