More information about Line

AND CONTOUR INTEGRALS.

Real line integrals. Let $P(x, y)$ and $Q(x, y)$ be continuous real valued functions on the plane and let γ be a smooth directed curve. We wish to define the line integral

$$
\int_{\gamma} P(x, y) d x+Q(x, y) d y
$$

This can be done in several ways. One of which is to partition the curve γ by a very large number of points, define Riemann sums for the partition, and then take a limit as the "mesh" of the partition gets finer and finer. However an argument like the one we did in class for complex line integrals shows that if $c(t)=(x(t), y(t))$ with $a \leq t \leq b$ is a smooth parameterization of γ then

$$
\int_{\gamma} P(x, y) d x+Q(x, y) d y=\int_{a}^{b}\left(P(x(t), y(t)) x^{\prime}(t)+Q(x(t), y(t))\right) d t
$$

This reduces computing $\int_{\gamma} P(x, y) d x+Q(x, y) d y$ to first finding a parameterization of γ and then computing a standard Riemann integral such as we have all seen in calculus.

Here is an example. Let γ be the upper half of the circle $|z|=1$ transversed counter clockwise. Then compute

$$
\begin{equation*}
\int_{\gamma} x y^{2} d x-\left(x+y+x^{3} y\right) d y \tag{1}
\end{equation*}
$$

This half circle is parameterized by

$$
x(t)=\cos (t), \quad y(t)=\sin (t)
$$

with $0 \leq t \leq \pi$. Now the calculation proceeds just as if we were doing a change of variables. That is

$$
d x=-\sin (t) d t, \quad d y=\cos (t) d t
$$

Using these formulas in (1) gives

$$
\begin{aligned}
& \int_{\gamma} x y^{2} d x-\left(x+y+x^{3} y\right) d y \\
& \quad=\int_{0}^{\pi}\left(\cos (t) \sin ^{2}(t)(-\sin (t)) d t-\left(\cos (t)+\sin (t)+\cos ^{3}(t) \sin (t)\right) \cos (t) d t\right) \\
& \quad=\int_{0}^{\pi}\left(\cos (t) \sin ^{2}(t)(-\sin (t))-\left(\cos (t)+\sin (t)+\cos ^{3}(t) \sin (t)\right) \cos (t)\right) d t
\end{aligned}
$$

With a little work ${ }^{1}$ this can be shown to have the value $-(2 / 5+\pi / 2)$.
Here is another example.

$$
\int_{C}(2 x+y) d x+(2 y-x) d y
$$

where C is the part of the curve $y=x^{2}+1$ between the points $(0,1)$ and $(2,5)$. This curve is parameterized by

$$
x(t)=t \quad y(t)=t^{2}+1
$$

Thus

$$
d x=d t, \quad d y=2 t d t
$$

with $0 \leq t \leq 2$. Thus

$$
\begin{aligned}
\int_{C}(2 x+y) d x+(2 y-x) d y & =\int_{0}^{2}\left(\left(2 t+t^{2}+1\right)(1)+\left(2\left(t^{2}+1\right)-t\right)(2 t)\right) d t \\
& =\int_{0}^{2}\left(4 t^{3}-t^{2}+6 t+1\right) d y \\
& =\frac{14}{3}
\end{aligned}
$$

Here are some for you to try.

1. $\int_{\Gamma}(x+2 y) d x+3 x^{2} d y$ where Γ is the line segment form $4+3 i$ to
2. $\int_{\gamma}(x+y) d x+y d y$ where γ is the lower right quarter of the circle $|z|=3$ traversed clockwise.

Complex contour integrals. Let $f=u+i v$ be a complex valued function defined on a smooth curve γ. Then we have defined in class

[^0]the contour integrals $\int_{\gamma} f(z) d z$. If $z=x+i y$ then $d z=d x+i d y$ and we have
\[

$$
\begin{aligned}
\int_{\gamma} f(z) d z & =\int_{\gamma}(u+i v)(d x+i d y) \\
& =\int_{\gamma} u d x-v d y+i \int_{\gamma} v d y+u d x
\end{aligned}
$$
\]

So computing a complex contour just reduces to computing two real line integrals. Thus all the remarks above apply to this case also.

Here is an example. Compute $\int_{C} z^{2} d z$ where C is the part of the curve $x=y^{2}$ between $(1,-1)$ and $(1,1)$. This curve is parameterized by

$$
x(t)=t^{2}, \quad y(t)=t
$$

with $-1 \leq t \leq 1$. For this problem it is smarted to write the parameterization in complex form:

$$
z(t)=t^{2}+i t
$$

(Still with $-1 \leq t \leq 1$.) Then

$$
d z=2 t d t+i d t=(2 t+i) d t
$$

Thus

$$
z^{2} d z=\left(t^{2}+i t\right)^{2}(2 t+i) d t=\left(\left(t^{5}-4 t^{3}\right)+i\left(5 t^{4}-t^{2}\right)\right) d t
$$

Therefore

$$
\int_{C} z^{2} d z=\int_{-1}^{1}\left(t^{5}-4 t^{3}\right)+i\left(5 t^{4}-t^{2}\right) d t=\frac{4}{3} i
$$

Here are more practice problems.

1. $\int_{C}|z|^{2} d z$ where C is the boundary of the square with vertices $(0,0),(1,0),(1,1),(0,1)$.
2. $\int_{\Gamma} \frac{d z}{z}$ where Γ is the circle $|z|=r$ traversed in the counterclockwise direction.

[^0]: ${ }^{1}$ Here I am being a bit of a hypocrite as I used the computer package Maple to do the calculation

