Mathematics 551 Test \#1,
Take Home Portion

It is all right to work together on this test, but this does not mean you are allowed to copy!

Note: In this test if α is a regular curve, we will denote the unit tangent to α by \mathbf{t} and the unit normal by \mathbf{n}.
(1) (10 points) A pond has a convex surface. If the shore line is 500 meters long and the surface area of the pond is 10,000 meters 2, then show that it is possible for a duck to swim to a point that is at least 20 meters from any point on the shore.
(2) (10 points) This problem gives a well known and useful formula for the curvature of a regular planar curve. Let $\alpha:[a, b]: \mathbb{R}^{2}$ be a C^{2} regular curvature. We do not assume that $\alpha(t)$ is unit speed. Then show

$$
\alpha^{\prime}(t) \times \alpha^{\prime \prime}(t)=|\alpha(t)|^{2} \kappa(t) e_{3}
$$

where \times is the usual cross product from vector analysis and $e_{3}=(0,0,1)$ is the vector in the direction of the positive z-axis.
(3) (20 points) Let $\alpha:[0, L] \rightarrow \mathbb{R}^{2}$ be a unit speed close curve. Let $s_{0} \in(0, L)$ be the point of α that is farthest from the origin. In this problem you will show the curvature of α at satisfies $\left|\kappa\left(s_{0}\right)\right| \geq 1 / R$ where $R=\left|\alpha\left(s_{0}\right)\right|$ is the maximum distance of α from the origin. To start let

$$
f(s)=|\alpha(s)|^{2}=\alpha(s) \cdot \alpha(s) .
$$

(a) The function $f(s)$ has a maximum at $s=s_{0}$ and therefore $f^{\prime}\left(s_{0}\right)=0$. Use this to show that $\alpha\left(s_{0}\right) \cdot \mathbf{t}\left(s_{0}\right)=0$.
(b) Explain why $\alpha\left(s_{0}\right)= \pm R \mathbf{n}\left(s_{0}\right)$.
(c) Use the Frenet formulas to find a general formula for $f^{\prime \prime}(s)$ that only involves $\alpha(s), \kappa(s)$ and $\mathbf{n}(s)$.
(d) As $f(s)$ has a maximum at s_{0} we have by the second derivative test that $f^{\prime \prime}\left(s_{0}\right) \leq 0$. Use this and parts (a), (b) and (c) to show $\kappa\left(s_{0}\right) \geq 1 / R$.
(4) (20 points) Let $\alpha:[0, L] \rightarrow \mathbb{R}^{2}$ be a unit speed curve and assume that the curvature κ_{α} of α is positive. Let $r>0$ be a constant. Define a new curve $\beta:[0, L] \rightarrow \mathbb{R}^{2}$ by

$$
\beta(s)=\alpha(s)-r \mathbf{n}(s) .
$$

(a) Draw a picture to indicate why β is "the parallel curve at a distance r from α ".
(b) Show that the speed of β is $v_{\beta}(s)=1+r \kappa_{\alpha}(s)$.
(c) Show the length of β is

$$
\operatorname{Length}(\beta)=L+r \int_{0}^{L} \kappa_{\alpha}(s) d s
$$

where L is the length of α.
(d) Find a formula $\kappa_{\beta}(s)$ for the curvature of β.

