(1) (5 Points) State the Frenet formulas for a C^2 regular unit speed curve in \mathbb{R}^2 carefully defining all the quantities involved.

(2) (5 Points) Let $\alpha: [a, b]$ be a C^2 regular curve in \mathbb{R}^2, but we do not assume that α is unit speed. Then, using the Frenet formulas define formulas for the velocity vector $\frac{d\alpha}{dt}$ and the acceleration vector $\frac{d^2\alpha}{dt^2}$ in terms of the speed v, curvature κ, unit tangent t and unit normal n of α.
(3) (10 points)
(a) Parameterize the ellipse \(\frac{x^2}{4} + \frac{y^2}{25} = 1 \).

(b) Set up the integral for the length of this ellipse (do not evaluate this integral.)

(4) (10 points) Find the curvature of the curve \(\alpha(t) = (e^t \cos(t), e^t \sin(t)) \)
(5) (10 points) For the following curves find \(\int_0^L \kappa(s) \, ds \).

\[\int_0^L \kappa(s) \, ds = \]

\[\int_0^L \kappa(s) \, ds = \]