Show your work! Answers that do not have a justification will receive no credit.
(1) (5 Points) State the Frenet formulas for a C^{2} regular unit speed curve in \mathbb{R}^{2} carefully defining all the quantities involved.
(2) (5 Points) Let $\alpha:[a, b]$ be a C^{2} regular curve in \mathbb{R}^{2}, but we do not assume that α is unit speed. Then, using the Frenet formulas define formulas for the velocity vector $\frac{d \alpha}{d t}$ and the acceleration vector $\frac{d^{2} \alpha}{d t^{2}}$ in terms of the speed v, curvature κ, unit tangent \mathbf{t} and unit normal \mathbf{n} of α.
(3) (10 points)
(a) Parameterize the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$.
(b) Set up the integral for the length of this ellipse (do not evaluate this integral.)
(4) (10 points) Find the curvature of the curve $\alpha(t)=\left(e^{t} \cos (t), e^{t} \sin (t)\right)$
(5) (10 points) For the following cureves find $\int_{0}^{L} \kappa(s) d s$.

