Mathematics 550 Test \#2

Name: \qquad

1. (30 points) Complete the following identities:
(a) $\nabla(f g)=$
(b) $\operatorname{div}(f \mathbf{F})=$
(c) $\operatorname{div}(\mathbf{F} \times \mathbf{G})=$
(d) $\operatorname{div} \operatorname{curl} \mathbf{F}=$
(e) $\operatorname{curl}(f \mathbf{F})=$
(f) $\frac{d}{d t}(\mathbf{b}(t) \times \mathbf{c}(t))=$
2. (10 points) What are the velocity and acceleration of the path $\mathbf{c}(t)=\left(t, t^{2}, t^{3}\right)$?

Velocity $=$ \qquad

Acceleration= \qquad
3. (10 points) Sketch the graph of the curve parameterized by $x(t)=3 \cos (t)$ and $y(t)=2 \sin (t)$.
4. (15 points) Let $f(x, y)=x^{2}-x y+y^{3}$.
(a) What the equation of the tangent to $z=f(x, y)$ at the point $(1,2,7)$?
(b) Where does the tangent plane intersect the z-axis?
5. (10 points) What is the tangent line to $\mathbf{c}(t)=\left(t^{2}, t^{3}\right)$ when $t=2$?
6. (5 points) Let $f=x y+y z+x z$. Then compute the gradient of f.

$$
\nabla f=
$$

7. (10 points) Let $\mathbf{F}=y z \mathbf{i}+x z \mathbf{j}+\mathbf{k} x y^{2}$. Then compute curl \mathbf{F}.

$$
\operatorname{curl} \mathbf{F}=
$$

8. (10 points)
(a) Let $V: \mathbf{R}^{3} \rightarrow \mathbf{R}$ be a function and $\mathbf{c}:[a, b] \rightarrow \mathbf{R}^{3}$ a path. Then state the chain rule for $\frac{d}{d t} V(\mathbf{c}(t))=$
(b) Now assume that $\mathbf{c}(t)$ satisfies

$$
m \mathbf{c}^{\prime \prime}(t)=-\nabla V(\mathbf{c}(t))
$$

for a positive number m (the "mass"). The show that

$$
E=\frac{1}{2} m\|\mathbf{c}(t)\|^{2}+V\left(\mathbf{c}^{\prime}(t)\right)
$$

is constant.

