Mathematics 532/

Quiz # 1

You must show your work to get full credit.

For this quiz \mathbb{A}^2 will be the affine space of ordered pairs (x, y) with $x, y \in \mathbb{R}$ where \mathbb{R} is the set of real numbers.

1. For $a, b, c \in \mathbf{R}$ define L(a, b, c).

This is the set of points

$$L(a, b, c) = \{(x, y) \in \mathbb{A}^2 : ax + by + c = 0\}$$

where a and b are not both zero.

2. Let A and B be points of \mathbb{A}^2 . Then define P is an *affine combination* of A and B.

This means

where
$$\alpha, \beta \in \mathbf{R}$$
 and
 $\alpha + \beta = 1.$

3. Let A, B, and C be points of \mathbb{A}^2 . Then define P is an **affine combination** of A, B and C.

This means

where
$$\alpha, \beta, \gamma \in \mathbf{R}$$
 and
 $\alpha + \beta + \gamma = 1.$

4. Show that if A and B are one the line L(a, b, c) then so is any affine combination of A and B. *Proof.* Let $A = (x_1, y_1)$ and $B = (x_2, y_2)$. We are assuming that A and B are on L(a, b, c) which means that

(1) $ax_1 + by_1 + c = 0$ and $ax_2 + by_2 + c = 0$.

As P is an affine combination of A and B we have that there are $\alpha, \beta \in \mathbf{R}$ with $\alpha + \beta = 1$ and

$$P = \alpha A + \beta B = \alpha(x_1, y_1) + \beta(x_2, y_2) = (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2).$$

To finish the proof, we just need to check that the coordinates of P satisfy the equation defining L(a, b, c).

$$a(\alpha x_1 + \beta x_2) + b(\alpha y_1 + \beta y_2) + c = \alpha(ax_1 + by_1) + \beta(ax_2 + by_2) + c$$

$$= \alpha(-c) + \beta(-c) + c \qquad \text{(by the equations 1)}$$

$$= -c(\alpha + \beta) + c$$

$$= -c(1) + c \qquad (\text{as } \alpha + \beta = 1)$$

$$= 0$$

Therefore P is on L(a, b, c).

Name: