Modern Geometry Homework.

1. Projective planes.

In planar projective geometry we have three undefined notations. The first a *point*, the second it a *line*, and the third is relation *incidence* between a point and a line. There are three axioms:

Axiom 1 (First Axiom of Projective Geometry). For any pair of distinct points there is unique line incident with these points. \Box

Axiom 2 (Second Axiom of Projective Geometry). For any pair of distinct lines there is unique point incident with these lines. \Box

Axiom 3 (Thrid Axiom of Projective Geometry). There are four points no three of which are incident with the same line. \Box

We will often use the symbol \mathbb{P}^2 to denote a projective plane.

Proposition 1. Let ℓ be a line in \mathbb{P}^2 and P a point of \mathbb{P}^2 that is not on ℓ . Let (P) be the set of all lines that are incident with P. Then there is a bijection between ℓ and $\mathcal{L}(P)$.

Problem 1. Prove this. *Hint:* Define $f: \ell \to \mathcal{L}(P)$ by

$$f(Q) = \overleftarrow{QP}.$$

Define $g: \mathcal{L}(P) \to \ell$ by

$$g(m) = m \cap \ell.$$

Now

 $f(g(m)) = \overleftarrow{g(m)P} \qquad \text{(Definition of } f)$ = m (m is a line incident with P and g(m))

and

This shows that f and g are bijections. Draw a picture that illustrates this proof.

Proposition 2. Given two distinct lines ℓ and m in the projective plane \mathbb{P}^2 , there is a point that is not incident with either ℓ or m.

Proof. Towards a contradiction If this is If this is false, then every point of \mathbb{P}^2 is on either ℓ or m (or both). By the Thrid Axiom of Projective Geometry, there are four points P_1 , P_2 , P_3 , P_4 such that no three of them are on the same line. So we much have two of them, say P_1 and P_2 , on ℓ and the other two, P_3 and P_4 , on m and none of these are equal to $\ell \cap m$. Then the point $P_1 P_3 \cap P_2 P_4$ is a point not on either ℓ or m, contradicting that all the points of \mathbb{P}^2 are on the either ℓ or m. (See Figure 1)

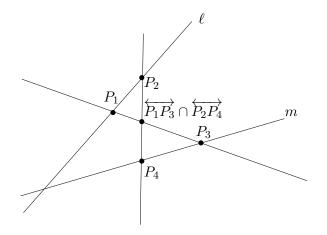


FIGURE 1

Proposition 3. Let ℓ and m be lines in \mathbb{P}^2 . Show that there is a bijection between ℓ and m.

Problem 2. Prove this along the following line. If $\ell = m$, then this is clear. So assume that $\ell \neq m$ and use Proposition 1 to find a point P that is not on either ℓ or m. Then by Proposition 1 there is a bijection $f_1: \ell \mathcal{L}(P)$ and a bijection $f_2: m: \mathcal{L}(P)$. Use f_1 and f_2 to get a bijection between ℓ and m.

Problem 3. Give anther proof of Proposition 3 along the following lines. Again we can assume that $\ell \neq m$ and that we have a point P that is on neither ℓ or m. Define a map $f: \ell \to m$ by

$$f(Q) = \overrightarrow{PQ} \cap m.$$

Draw a picture to show what f does and show that f is a bijection.

Proposition 4. Let P and Q be points of \mathbb{P}^2 and let $\mathcal{L}(P)$ be the collection of all lines that are incident with P and $\mathcal{L}(Q)$ the set of all lines incident with Q. Then there is a bijection between $\mathcal{L}(P)$ and $\mathcal{L}(Q)$.

Problem 4. Prove this. *Hint:* One way would be to use Proposition 1.

The following is the projective version of Theorem 14 on Homework 1.

Theorem 5. Assume that some line ℓ of \mathbb{P}^2 only has a finite number of points, say n + 1. Then

(a) Every line has exactly n + 1 points incident with it.

(b) Every point has exactly n + 1 lines incident with it.

- (c) \mathbb{P}^2 contains exactly $n^2 + n + 1$ points. (d) \mathbb{P}^2 contains exactly $n^2 + n + 1$ lines.

Problem 5. Prove this.

 $\mathbf{2}$