
Modern Geometry Homework.

1. Constructing examples of affine planes.

We are now going to use the usual coordinate geometry we all know
and love from high school to construct examples of affine geometries. I
am assuming that you are familiar with the real numbers R, the complex
numbers C, and the rational numbers Q. We will use F to denote any one of
these and refer to it as the base field . We define affine plane A2 such that
the set of points of A2 is just the set of ordered pairs (x, y) with x, y ∈ F
and define the lines of of A2 to be the zero sets of linear equations. To start
let

A2 := {(x, y) : x, y ∈ R}.
Probably the case you want to keep in mind is when F = R in which case
A2 is just the usual plane with its x-y coordinates.

We now want to define lines by their equations. One way to get an
equation for a line is the slope intercept form

y = mx+ β

where m is the slope of the line and β is the y-intercept. See Figure 1
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Figure 1. The line y = mx+ β has y-intercept (0, β) and slope m.

This is nice in that for each line that is not vertical we get a unique
equation. The problem is that for some limes (the vertical ones) there is
no equation. As a bit of review, and to motivate what is coming, we look
at other forms of equations of lines. One is the point slope form : the
equation of the line through (x0, y0) with slope m is

y = y0 +m(x− x0),

see Figure 2.

Problem 1. Find the y-intercept of y = y0 +m(x− x0). �
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Figure 2. The equation of the line through (x0, y0) with slope m is
y = y0 +m(x− x0)

Anther form is the two point form. If a line goes through the points
(x0, y0) and (x1, y1) where x0 6= y0 then the equation through these points
has the equation

y = y0 +m(x− x0) where m =
y1 − y0
x1 − x0

,
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Figure 3. The equation of the line through the points (x0, y0) and
(x1, y1) with x0 6= x1.

Problem 2. Let (x0, y0) and (x1, y1) be points of A2 with x1 6= x0. Show
that the slope intercept form of the equation of the line through these points
is

y = mx+ β with m =
y1 − y0
x1 − x0

and β =
x1y0 − x0y1
x1 − x0

.
�

All of these forms of the equations of lines we have just given have the
problem that they do not represent vertical.

The other standard form of equations for lines

ax+ by + c = 0
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where a and b are not both zero.

Problem 3. Why do we rule out the case where a = b = 0? �

This has the advantage that every line in the plane has an equation of
this form. The draw back is that there is more than one such equation for
each line. For example

x+ 2y+ 3 = 0, −x− 2y− 3 = 0, 2x+ 4y+ 6 = 0, 42x+ 82y+ 126 = 0

are all equations for the same line. Still this is the definition we will use.

Remark 1. Let use recall a bit of vector algebra. If we want to find the line,
call it `, through the point P0 = (x0, y0) and perpendicular to the vector
~n = 〈a, b〉. Let P = (x, y) be any arbitrary point on `. Then the vector

~P0P = 〈x− x0, y − y0〉

is perpendicular to the vector ~n = 〈a, b〉. This means that that dot product
of these two vectors is zero. That is

0 = 〈a, b〉 · ~P0P = 〈a, b〉 · 〈x− x0, y − y0〉 = ax+ by + (−ax0 − by0)

which gives us an equation for the required line. See Figure 4. �

P0 = (x0, y0)

P = (x, y) ~n = 〈a, b〉

~P0P

`

Figure 4. To find the line ` through the point P0 and per-
pendicular to the vector ~n, we have that for any point P on

` the vector ~P0P will be perpendicular to ~n. Thus the dot

product of ~n and ~P0 will be zero. The equation ~P0 · ~n = 0
can be expanded into an x-y equation for the line.

Problem 4. It is often useful to be able to find a vector perpendicular to a
given vector 〈a, b〉. Show that 〈−b.a〉 is such a perpendicular. Hint: Show
that their dot product is zero. �

Remark 2. To review some more vector algebra, let us look for the equation
of the line through P0 = (x0, y0) and P1 = (x1, y1). Then, see Figure 5, the
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vector ~n = 〈−(y1−y0), (x1−x0)〉, should be perpendicular to the line. Thus
the construction of Remark 1 gives that an equation of the line should be

−(y1 − y0)x+ (x1 − x0)y + ((y1 − y0)x0 − (x1 − x0)y0) = 0. (1)
�

P0 = (x0, y0)

P1 = (x1, y1) ~n = 〈−(y1 − y0), (x1 − x0)〉

〈x1 − x0, y1 − y0〉

`

Figure 5. To find an equation of the line ` through the
point P0 = (x0, x1) and P1 = (x1, y1) we note that the vector
~P0P1 = 〈x1 − x0, y1 − y0〉 is parallel is parallel to the line

we are looking for. Thus, by Problem 4, the vector ~n =
〈−(y1 − y0), (x1 − x0)〉 is perpendicular to the line. We can
now use the construction of Remark 1 to find an equation of
the line.

Problem 5. Simplify Equation 1 and verify that (x0, y0) and (x1, y1) satisfy
this equation. �

We now define what will be the lines in our geometry.

Definition 3. If a, b, c ∈ F and a and b are not both zero, then let L(a, b, c)
be the subset of A2 defined by

L(a, b, c) :=
{

(x, y) : ax+ by + c = 0
}
.

We call such subsets the lines in A2. �

From now on when we write L(a, b, c) we will assume that a and b are not
both zero. For the rest of this section when we say “line” we mean a subset
of the form L(a, b, c) with a and b not both zero.

Here are some examples:

Problem 6. In the case the base field is F = R, so that A2 is the usual
coordinate plane,

(a) Graph L(1, 2, 3).
(b) Graph L(1, 0, 4).
(c) Graph L(0, 1,−2).
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(d) Find a, b and c such that L(a, b, c) contains both the points (1, 2) and
(−2, 3). (There are more than one choice for (a, b, c) can you figure out
how they are realted?) Hint: See Remark 2.

(e) Given x0, y0 > 0, find a and b such that L(a, b,−1) contains the points
(x0, 0) and (0, y0). �

We now what to show that A2 with this definition of a line satisfies the
axioms for an affine plane. While not hard, we will do this in small steps.

Proposition 4. If λ 6= 0 then for any a, b, c with a and b not both zero

L(a, b, c) = L(λa, λb, λc).

Problem 7. Prove this. Hint: Do not make this hard. This really does
not say anything more than that for (x, y) ∈ A2 and λ 6= 0 that we have
ax+ by − c = 0 if and only if λax+ λby − λc = 0. �

Lemma 5. For any two distinct points P0 = (x0, y0) and P1 = (x1, y1) there
is at least one line containing P0 and P1. That is we can find a, b, c ∈ F with
a and b not both zero and with P0 and P1 on L(a, b, c).

Problem 8. Prove this. Hint: Look at Problem 4. While in that problem
we were assuming that the field F = R, it is not hard to see that the equation
for the line your got works in the general case. �

Remark 6. If you are familiar with determinants, here is an outline of anther
way to prove the last lemma. Consider distinct points (x0, y0) and (x1, y1)
and the 3× 3 determinant

f(x, y) =

∣∣∣∣∣∣
x y 1
x0 y0 1
x1 y1 1

∣∣∣∣∣∣
Expanding along the first row gives∣∣∣∣∣∣

x y 1
x0 y0 1
x1 y1 1

∣∣∣∣∣∣ = x

∣∣∣∣y0 1
y1 1

∣∣∣∣− y ∣∣∣∣x0 1
x1 1

∣∣∣∣+ 1

∣∣∣∣x0 y0
x1 y1

∣∣∣∣
= (y0 − y1)x+ (x1 − x0)y + (x0y1 − x1y0)
= ax+ by + c

where this defines a, b, and c. Note that a = 0 only when y0 = y1 and b = 0
only when x0− x1. As the points are distinct we have that at least one of a
or b is nonzero. And the punch line is that if two rows of a determinant are
equal, then the determinant is zero. Thus (x, y) = (x0, y0) the the first two
rows are the same and so f(x0, y0) = 0. Likewise if (x, y) = (x1, y1) then
the first and third rows are the same and thus f(x1, y1) = 0. Therefore we
see that

L(y0 − y1, x1 − x0, x0y1 − x1y0)
contains both the points (x0, y0) and (x1, y1). �
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We still need to show that the line through two distinct points is unique.

Problem 9. Show that the set of points (x, y) satisfying y = mx+ β is the
same as the line L(m,−1, β). �

Lemma 7. Let (x0, y0) and (x1, y1) be points of A2 with x0 6= x1. Assume
these points are both on L(a, b, c) where a and b are not both zero. That is

ax0 + by0 + c = 0 and ax1 + by1 + c = 0.

Then b 6= 0 and

L(a, b, c) = L(m,−1, β)

where

m =
y1 − y0
x1 − x0

, and β =
x1y0 − x0y1
x1 − x0

.

Problem 10. Prove this along the following lines:

(a) Show a(x1 − x0) + b(y1 − y0) = 0.
(b) Show b 6= 0. Hint: If b = 0 what does this say about a?

(c) Show
−a
b

=
y1 − y0
x1 − x0

= m

(d) Use λ = −1/b in Proposition 4 to conclude

L(a, b, c) = L
(−a
b
,−1,

−c
b

)
.

(e) Show
−c
b

=
x1y0 − x0y1
x1 − x0

.

(f) Assemble the parts above to finish the proof. �

Lemma 8. If (x0, y0) and (x1, y1) are distinct points of A2 with x0 = x1
and these points are both on L(a, b, c) then

L(a, b, c) = L(1, 0,−x0)

Problem 11. Prove this. Hint: Start by noting that as the points are dis-
tinct that y0 6= y1 and use this to show b = 0. Thus a 6= 0 (why?). Therefore
L(a, b, c) = L(a, 0, c). Also L(a, 0, c) = L(1, 0, c/a) (why?). Finally use that
(x0, y0) is on L(1, 0, c/a) to conclude c/a = −x0. �

Lemma 9. If (x0, y0) and (x1, y1) are distinct points of A2 and they are on
L(a, b, c) and L(a′, b′, c′), then

L(a, b, c) = L(a′, b′, c′).

Problem 12. Prove this. Hint: If x0 6= x1 then by Lemma 7

L(a, b, c) = L
( y1 − y0
x1 − x0

,−1,
x1y0 − x0y1
x1 − x0

)
.

What does Lemma 7 say about L(a′, b′, c′)? If x0 = x1 use Lemma 8 and
the same line of reasoning. �
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Theorem 10. The first axiom of Affine Geometry holds in A2 when we use
the sets L(a, b, c) as lines. That is given any two points P and Q of A2 there
is a unique set of the form L(a, b, c) that contains both P and Q.

Problem 13. Assemble the lemmas above to give a proof of this. �

We now have to come to grips with when lines are parallel and when they
intersect in this setting.

Lemma 11. Given L(a, b, c) and L(a′, b′, c′) with ab′ − a′b 6= 0 then these
lines have exactly one point in common.

Problem 14. Prove this. Hint: This is the same as showing that the system

ax+ by + c = 0 (2)

a′x+ b′y + c′ = 0

has exactly on solution (x, y) ∈ A2. Multiply the first of these by b′ and the
second by b to get

ab′x+ bb′y + cb′ = 0

a′bx+ bb′y + bc′ = 0

Now subtract:

(ab′ − a′b)x+ cb′ − bc′ = 0

which, as ab′ − a′b 6= 0, gives a x value of

x =
bc′ − cb′

ab′ − a′b
.

Do a similar calculation get a formula for y that has ab′−a′b in the denomi-
nator. This shows that there is at most one solution (why?). Now plug your
formulas for x and y back into the system (2) to that there is at least one
solution. �

Lemma 12. Let a, b, a′, b′ ∈ F with a and b not both zero and a′ and b′ not
both zero. Assume

ab′ − a′b = 0.

Then show there is a λ ∈ F, with λ 6= 0, such that

a′ = λa and b′ = λb.

(In vector form this is 〈a′, b′〉 = λ〈a, b〉.)

Problem 15. Prove this. Hint: As a and b are not both zero, consider two
cases. First if a 6= 0 show that this implies a′ 6= 0 and show that λ = a′

a
works. Do something similar when b 6= 0. �

Lemma 13. Given L(a, b, c) and L(a′, b′, c′) with ab′ − a′b = 0, show that
L(a, b, c) are parallel. (Recall that under our definition this means that either
the two have not point in common or they are equal.)



8

Problem 16. Prove this. Hint: By Lemma 12 there is a λ 6= 0 such that
a′ = λa and b′ = λb. Show if c′ = λc then L(a, b, c) = L(a′, b′, c′) and if
c′ 6= λc that L(a, b, c) and L(a′, b′, c′) have no points in common. �

Lemma 14. Given a point P = (x0, y0) and a, b ∈ F with a and b not both
zero, show there is a c such that P is on L(a, b, c).

Problem 17. Prove this. �

Theorem 15. The second axiom of affine geometry holds in A2. Explic-
itly this is the parallel axiom which in this setting says that given any line
L(a, b, c) and a point P = (x0, y0) not on this line that there is a unique line
through P and parallel to L(a, b, c).

Problem 18. Prove this. Hint: By Lemma 14 there is a c′ ∈ F such that
P is on L(a, b, c′). Show that the line L(a, b, c′) is parallel to L(a, b, c) and
that it is the only parallel to L(a, b, c) through this point. �

Theorem 16. The third axiom of affine geometry holds in A2. That is there
are four points of A2 with no three on the same line.

Problem 19. Prove this. Hint: You might try the four points (0, 0), (1, 0),
(0, 1), and (1, 1). �

We can now say when two of the lines L(a, b, c) and L(a′b′c′) are equal
(although this is implicit in some of the results above).

Proposition 17. The two lines L(a, b, c) and L(a′, b′, c′) are equal if and
only if there is a λ 6= 0 such that

a′ = λa, b′ = λb, c′ = λc.

Problem 20. Prove this. �

2. Fields and their basic properties.

In the last section we construct the affine planes from sets of ordered
pairs (x, y) where x, y ∈ F and F was either the real numbers R, the rational
numbers, Q, or the complex numbers, C. If you look at what we did you can
see that the only properties we used for elements of F were that they satisfy
the usual rules for addition, subtraction, multiplication, and division we
familiar with from basic high school algebra. This motivates the following:

Definition 18. A field is a set F with two operations + (addition) and ·
(multiplication) that satisfy the following definition. The associative laws

x+ (y + z) = (x+ y) + z x · (y · z) = (x · y) · z
hold. The communicative laws

x+ y = y + x x · y = y · x
hold. The distributive law

x · (y + z) = x · y + x · z
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holds. There are two elements 0 (zero) and 1 (unity or one) such that for
all x ∈ F

x+ 0 = x x · 1 = 1

and 0 6= 1. For each x ∈ F there is an additive inverse −x of x such that

x+ (−x) = 0.

For each x ∈ F with x 6= 0 there is an inverse , x−1, of x such that

x · (x−1) = 1.
�

We will simplify the notation a bit and write xy for x · y. We also use
abbreviation

a+ (−b) = a− b
and call this subtraction . We also have a natural definition of division

a

b
= a(b−1).

We now give some examples of fields other that might be new to you.
First let Q(

√
2) be the subset of the real numbers given by

Q(
√

2) :=
{
a+ b

√
2 : a, b ∈ Q

}
Proposition 19. If a, b ∈ Q and

a+ b
√

2 = 0

then

a = b = 0.

Proof. If a = 0, then b
√

2 = 0 which implies b = 0. If b = 0 then a =
a+ b

√
2 = 0. So if the proposition does not hold we have that both a and b

are not zero. But then a+ b
√

2 = 0 implies

√
2 =
−a
b

and −ab is a rational number, contradicting the well known fact that
√

2 is
irrational. �

Also Q(
√

2) is closed under sums and products: if a+ b
√

2 and a′ + b′
√

2
are in Q(

√
2) then the sum is

(a+ b
√

2) + (a′ + b′
√

2) = (a+ a′) + (b+ b′)
√

2

which is back in Q(
√

2), and the product is

(a+ b
√

2)(a′ + b′
√

2) = (aa′ + 2bb′) + (ab′ + a′b)
√

2

and as the numbers (aa′ + 2bb′) and (ab′ + a′b) are rational this is back
in Q(

√
2). More subtle is that Q(

√
2) is closed under taking inverses. Let
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a + b
√

2 be a nonzero element of Q(
√

2). Then by the last proposition at
least one of a or b is nonzero and whence a2 + 2b2 6= 0. Therefore

1

a+ b
√

2
=

a− b
√

2

(a+ b
√

2)(a− b
√

2)
=

a

a+ 2b2
+

−b
a2 + 2b2

√
2.

But a
a+2b2

and −b
a2+2b2

are rational numbers which shows that 1
a+b
√
2

is an

element of Q(
√

2). These facts can be put together to get

Proposition 20. The subset Q(
√

2) if R is a field. (More precisely a subfield
of |R.) �

There was nothing special about
√

2. The same line of reasoning shows

Proposition 21. If d is a positive integer such that
√
d is irrational, then

the set

Q(
√
d) := {a+ b

√
d : a, b ∈ Q}

is a subfield of R. �

Then using F = Q(
√
d) in the construction of A2 as in Section 1 gives us

many more examples of affine planes.
There are also many finite fields. To find some of them recall the con-

struction of the integers modn. If n is a positive integer a is any integer let
amodn be the remainder when a is divided by n. For example

5 mod 2 = 1 6 mod 2 = 0 17 mod 5 = 2

−7 mod 5 = 3 100 mod 9 = 1 853,462 mod 100 = 62.

We can then define addition and multiplication modn by reducing modn.
Therefore if n = 6 we have that mod 6 addition and multiplication look like

1 + 2 mod 6 = 3 mod 6 = 3

3 + 4 mod 6 = 7 mod 6 = 2

2 · 6 mod 6 = 6 mod 6 = 1

3 · 4 mod 6 = 12 mod 6 = 2

The full addition and multiplication tables looks like

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

We call this Z6. For any n ≥ 2 we can make the corresponding addition
and multiplication tables. We call the resulting number system Zn, the
integers modulo n.
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If F is a field and a, b ∈ F with ab = 0, then a = 0 or b = 0. To see this
note that if a = 0, then we are done. So assume that a 6= 0. Then multiply
both sides of ab = 0 by a−1 to get a−1ab = a−10 which simplifies to b = 0.
Thus we from the multiplication table above that Z6 is not a field as 2 ·3 = 0
in Z6.

Let us look at n = 7. Then the tables are

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

· 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

If you are very energetic you can check that this is a field. (What takes
the most work is showing that the associative laws hold.) What makes this
a field while Z6 is not is that 7 is a prime number. In general we have

Theorem 22. If p is a prime number then Zn is a field. �

Thus for each prime we can construct an affine plane

A2 := {(x, y) : x, y ∈ Zp}.
When p = 2 this gives the four point plane from Homework 1. When p = 3
this gives the nine point plane from Homework 1.

It is now natural to ask if this gives all the finite fields. The answer is no.

Theorem 23. If n = pk is a power of a prime number, there is field of
order n. Any two fields of the same order are isomorphic, so that there is
essential only one field of order n = pk. �

That a field of order pk exists was shown by Evariste Galois around 1830.
That these are the only finite fields was shown by E. H. Moore in 1893.
Moore was one of the first American mathematicians to gain an international
reputation.


