Modern Geometry Homework.

1. ONE TO ONE CORRESPONDENCES AND THE CARDINALITY OF SETS.

Definition 1. Let f: A — B be a function between sets.
(a) f is one-to-one (or injective) iff for all aj,as € A with a1 # ao
we have f(a1) # faz). (Or what is the same thing if aj,a2 € A and

f(a1) = f(az) then a1 = as.)
(b) f is onto (or surjective) iff for all b € B there is an a € A with

f(a) =b.
(¢c) fis one-to-one and onto (or bijective, or a one-to-one correspon-
dence) iff f both one-to-one and onto. |

Definition 2. If f: A — B and g: B — C, then the composition of g and
f, denoted by g o f is the function go f: A — C given by

go f(x):=g(f(z)).

Proposition 3. Let f: A— B and g: B — C be functions. Then

(a) If f and g are both one-to-one, then so is go g.
(b) If f and g are both onto, then so is go f.
(c) if f and g are both bijective, then so is go f.

]

Problem 1. Prove this. Hint: Note that once you have done parts (a) and
(b) you get part (c) for free. For parts (a) and (b) it is mostly a matter of
writing down the definitions and following your nose. For example in (b) if
c € C, as g is onto, there is a b € B with g(b) = ¢. But then as f is onto
there is an a € A with f(a) = b. Then what is (g o f)(a) = g(f(a))? O

Definition 4. Let A and B be sets. Then A and B have the same
number of elements (or have the same cardinality) iff there is a one-to-
one correspondence f: A — B. O

Proposition 5. If A and B have the same cardinality and B and C have
the same cardinality, then A and C have the same cardinality.

Problem 2. Prove this. Hint: Proposition 3 part (c). O
Proposition 6. Let f: A — B and g: B — A be functions. Assume
g(f(a)) =a forallac A, f(g(b)) =0 forallbe B.

Then both f and g are one-to-one and onto. In this case we say that f is
the inverse of g (and that g is the inverse of f).

Problem 3. Prove this. Hint: As the hypothesis are symmetric in f and g
it is enough to prove that f is bijective for, by reversing the roles of f and
g, the same proof would show that g is bijective.

To show that f is injective assume that f(a;) = f(az2). Then g(f(a1)) =

9(f(az)). But what are g(f(a1)) and g(f(a1))?
To show that f is onto, let b € B. Then what is f(g(b))?
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In this class many, if not most, of the one-one correspondences we well
construct are based on drawing a line trough a point on one set and seeing
where it interests anther set. We will use the notation

% = the line through the points P and Q.

and
]@ = the ray starting at P and passing through Q.

Here are a couple of examples of this idea.

Problem 4. Let O be the origin in the plane R?
(a) Draw the circle, C, defined by z? + y? = 1 and the ellipse, E, defined

by %2 + % = 1 on the same axis.

b) Let P, P’ # O be points such that P’ is on the ray O? Draw a picture
—
which shows why 0P = OP.
(c) Define a function f: C' — FE be letting f(P) by the point on the ray O?
intersects E. That is

f(P)=ENOP.

Note by part (b) we have OP — Of(P). Choose three points P;, Py and
P3; on C and draw their images under f on F.

(d) Define a function g: E — C be letting ¢g(Q) by the point on the ray Oﬁ
intersects C, that is

9(Q) = C N OG.

Again we can use part(b) to see that Oﬁ = Og(Q) Choose three points
Q1, Q2 and @3 on E and draw their images under g.

(e) Explain why g(f(P)) = P for all P € C and f(g(Q)) = Q forall Q € E.
You can, and probably should, do a “proof by picture on this”. But
here is a more formal version of showing f(g(P)) = P.

fe(Q)=En Og(cﬂ (Definition of f)
= £n0Q (As OQ = 0g(Q))

_ As Q) is on F so it is the point
o of intersection of OQ and E

Do a similar calculation to show g(f(P)) = P.
(f) Conclude that f and g are bijections and therefore C' and E have the
same cardinality. O

Problem 5. Figure 1 shows the circle 22 + y?> = 1 where N = (0,1) (the
“North Pole”). Let S be this circle with N removed (shown in blue). Let ¢
be the z-axis (shown in red). Note for any downward pointing ray starting
from N (three of these are shown in green) the ray will intersect both S and
L in exactly one point.



FIGURE 1

(a) Let P, P’ # N be points such that P’ is on the ray NP. Draw a picture
which shows ND=NP.

(b) If P is a point on S, then then the figure shows a corresponding point
f(P) on L. Give a verbal description of this function. In terms of a
formula it is given by

f(P)=¢nNP.

Note that by part (a) we have NP = Nf(P; .
(¢) If Q is a point on L, then then the figure shows a corresponding point
g9(Q) on S. Give a verbal description. This time the formula is

9(Q) = SNNG.
And by part (a) ]@ = Ng(Q;.

(d) Show these functions are inverse to each other. Again “proof by picture”
if accompanied by the correct English is fine, but we can be a bit more
formal. Justify the following steps.

g(f(P)) :Sme(P3
_SANP

=P (as Pis on S and ﬁ)
Do a similar calculation to show f(g(Q)) = Q. O

2. AXIOMS OF AFFINE GEOMETRY

Affine geometry is the part of Euclidean geometry that is left over when
all mention of distance and angles is removed. What is left are the ideas of
incidence and parallelism. A surprise is that there are more examples than
just the usual plane.

We have some undefined notions. The first is point which you can think
just as usual as a point in the plane. The collection of all points will be
denote by A2. The next undefined notation is line. These are special
subsets of A% and again think of these as lines in the usual sense. Finally
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there is the notion of incidence. This is a relation between points and
lines. To say that the point P is incidence with the line £ is just to say that
the point P is on the line L. Other ways to say that the point P and the
line ¢ are incidence are to say that ¢ goes through P, or that ¢ is on P.
The first axiom is just the familiar fact that two points determine a line.

Affine Geometry: Axiom 1. If P and Q are distinct points of A% (that
is P # Q) then there is a unique line that passes through both of them. [

When we say that this line is unique we mean that there is exactly one of
them. If P and ) are points of A? with P # @ then we will use the notation

% := The line through P and Q.

Proposition 7. If ¢ and m are distinct lines of A? then there is at most
one point that is incident with both £ and m. (Or a little more informally,
two distinct lines meet in at most one point.)

Thus if £ and m are distinct lines in A? either they have no point incident
with both of them, or there is exactly one point that is incident with both
of them. Anther restatement would be that two distinct lines can not meet
in two or more points. If £ and m are lines we will use the notation

¢ N'm = Point of intersection of ¢ and m.

Problem 6. Prove the last Proposition. Hint: Towards contradiction as-
sume that the distinct lines £ and m meet in two or more points and let P
and @ be two of these points. Then by first axiom of affine geometry there
is exactly one line through P and Q. If you think about it a bit this gives
a contradiction. ([

In Euclidian geometry we define two lines to be parallel if they have no
point in common. But in some circumstances it is convenient to think of a
line as being parallel to itself. Different text books have different conventions
about this. I am going to assume that a line is parallel to itself.

Definition 8. Two lines, ¢ and m of A? are parallel iff either £ = m or ¢
and m have no points in common. O

Affine Geometry: Axiom 2 (Parallel Axiom). If ¢ is a line of A? and P
is a point that is not on £, then there is a unique line m that goes through
P and is parallel to ¢. (See Figure 2.) O

Based on our definition of parallel lines we can give a slightly more general
version of this.

Proposition 9. If ¢ is any line of A? and P any point, then there is a
unique line m that goes through P and is parallel to .

Problem 7. Prove this. Hint: The only way this differs from the Parallel
Axiom is that we allow the point P to be on the line £. If P is on ¢ then
you just need to find a line, m, through P parallel to ¢. U



FIGURE 2. The Parallel Axiom tells us that given a line £ (here in
blue) and a point not on £ (here in green) there is exactly one line m
(here in red) through P that does not meet £.

Proposition 10. If¢; and {5 are parallel lines and the line m # {1 intersects
f1, then it also intersects (.

FIGURE 3. Proposition 10 tells us that if we have two parallel lines
(in blue) then a third line (in red) meets one of these lines if and only
if it meets the other one.

Problem 8. Prove this. Hint: Let P be the point where ¢; and m meet.
If m does not intersect f5, then how many parallels does £5 have that pass
through P? Draw a picture. O

Problem 9. This is a special case of a slightly more general result we will
prove later. Let #1, 5 and f3 be distinct lines. Assume that #; is parallel to
¢y and that /5 is parallel to ¢3. Show that ¢; is parallel to /3. O

The last axiom of affine geometry just ensures that we have more than
one line.

Affine Geometry: Axiom 3. There exists a set of four points in A% such
that no three of which are all on the same line. ([

We can give our first non-obvious example of an affine plane. In Figure
4 we have the four points A, B, C, D and the six lines a, b, ¢, d, e, f. We
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only count the intersections at the labeled and shaded points (this the point
at the center where you might think that a and d intersect does not count).
Note that in this figure any two of the points determine a unique line. For
any of the six lines and a point not on the line there is a unique parallel
to the line through the point. For example the parallel to d through the
points A is the line a. And no three of the points are all on the same line.
Therefore this gives us an example of an affine geometry that only has four
points and six lines. This is the smallest possible affine geometry.

d

FIGURE 4. This shows four points and the six lines they determine.
We only count the lines as intersecting if they both pass through one of
shaded circles.

What determines the geometry of this plane is the sets of points, {A, B,C, D}

and lines {a,b,c,d, e, f} and the incidence relations between them. In this
case these are

jﬁ:e, %:a, fﬁ:b, %:c, %:d, m:b, (1)

and
A=anb=ane=bnNe, B=cnNnd=cne=dnNe, (2)
C=aNc=anf=cNf, D=bnd=bNnf=dnf.

These are what defines the geometry, not the particular picture that we
draw of it. Figure 5 gives anther picture of the same geometry.

Problem 10. Use Figure 4 or Figure 5 to find the following:

(a) The line through C parallel to e.
(b) The line through C parallel to d.

Lemma 11. Let {1 and {o be distinct lines of A2. Assume that a third line
m (not equal to either {1 or Uy intersects both ¢1 and f3). Then any line n
parallel to m intersects each of €1 and {2 in exactly one point. (See figure

6.)
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FIGURE 5. This is anther model of the affine plane of Figue
4. The reason this is the same geometry is that the same set
of incidence relations (1) and (2) hold.

AT

FIGURE 6. Some possible configurations of the lines in Lemma 11.
Given two distinct lines (in blue) and a third line that intersects them
both (in red) then any line parallel to the red line (such as the green
line) also intersects each of the blue lines.

Problem 11. Prove the last Proposition. Hint: Towards a contradiction
assume that n does not intersect ¢1. Let P be the point of intersection of £
and m. Then ¢; and m are parallel to n and both go through P. ([

Theorem 12. Any two lines of A? have the same number of points. More
precisely, for any two lines in A there is a one-to-one correspondence be-
tween their points.

Problem 12. Prove this along the following lines. Let /1 and ¢5 be lines of
A?. We wish to find a bijection between these two sets. If £; = f5 then just
use the identity map. So assume that £1 # fs.

(a) Show that there is a line m distinct from ¢; and ¢, that intersects both
01 and fo. Hint: As l1 # {9, there is a point of ¢1 that is not on £ and
a point of /o that is not on ¢;. Let m be line through these two points.

(b) For each point P € A? let n(P) be the line of A? that passes through
P and is parallel to m. Use Proposition 11 to show that each n(P)
intersects both ¢; and f». Draw a picture to illustrate this.

(c¢) Define a function f that takes points on ¢; to points on {9 as follows
and a function g that takes points on /5 to points on ¢; as follows. (See
Figure 7.)



FIGURE 7. The construction of f is illustrated on the left. Given an
input point P on {1, draw the line n(P) through P and parallel to m.
The output, f(P), is the point where n(P) intersects £s.

The construction of g is illustrated on the right. Given an input point
Q on {3, draw the line n(Q) through @ and parallel to m. Then g(Q) is
the point where n(Q) intersects ¢1.

(i) If Pisapoint on 1, then f(P) is the point where n(P) intersects lo.
That is f(P) = n(P) N ¥a.

(ii) If @ is a point on #o, then g(Q) is the point where n(Q) intersects ¢;.
That is ¢(Q) = n(Q) N ¢,

Explain why f and g are inverse to each other. Hint: It is enough

to show that f(¢(Q)) = @ and g(f(P)) = P. Here is one of the two

calculations
f(9(Q)) =n(9(Q)) Nty (definition of f)

as n(Q) = n(g(Q) because

_ n(Q) and n(g(Q)) are parallel

(@) Nk to m and contain () and there
is only one such parallel.

=Q (as @ is on both n(Q) and ¢;.)
Do a similar calculation so find show g(f(P)) = P.
(d) Use Proposition 6 to finish the proof. O

Proposition 13. Each line of A? has at least two points on it.

Problem 13. Prove this. Hint: By Theorem 12 all lines have the same
number of points on them. So it is enough to show that there is at least

one line with two or more points on it. You should be able to do this using
Affine Axiom 3. U

Theorem 14. If some line of A% has a finite number of points on it, say n,
then

(a) Every line has exactly n points on it.

(b) Each point has exactly n+ 1 lines passing through it.

(¢) Each line has exactly n lines parallel to it (counting itself).
(d) A? consists of exactly n? points.



FIGURE 8. Start by choosing two intersecting lines « and 3. Then for
any point P of the plane let 2(P) be the line through P that is parallel
to z and let y(P) be the line through P parallel to y. Then let X (P) =
z Ny(P) be the point where y(P) intersects z and Y (P) = y N z(P) be
the point where z(P) intersects y. This is illustrated in the figure on
the left.

Conversely given points Xo on « and Yy on y by looking at the point
of intersection of the line through X, and parallel to y and the line
through Yy and parallel to « show there is a point Py = z(Yo) N y(Xo)
with X (Py) = Xo and Y (FPy) = Yo. This is illustrated on the right.

(e) There are exactly n® +n lines in A2.

Problem 14. Prove this. Hints:

(a)
(b)

This follows directly from Theorem 12.
Let P be a point of A% and £ a line that does not go through P. Let m

be the unique parallel to ¢ through P. For any point ) of £ let % be
the line through P and (). Draw a picture and explain why

{mpu{PQ:Qen
gives all the lines through P and why this shows that there are exactly
n + 1 of them.
Let ¢ be a line of A% and m a line that intersects ¢ in exactly one point.
Then any line n parallel to £ will intersect m in a point. And given any
point on m there is a line through this point parallel to £. These facts
can be put together to find a bijection between the lines parallel to £
and the points of m. Draw a picture.
You should be able to use the idea suggested by Figure 8 to find a bijec-
tion between the set of points P € A% and the set of ordered pairs (X,Y)
with X € £ and Y € 5. (This should remind you of the construction of
x-y coordinates in the plane.)
Let ¢ be a line of A2, Then any point ¢ has n + 1 lines through it by
part (b). If we throw out ¢ itself, this gives that through each point of
{ there are n lines that are not parallel to £. Explain why this shows
there are exactly n? lines of A? that are not parallel to £. This leaves
the lines that are parallel to £ and by part (c) there are n such lines. [

For anther example of an affine plane see Figure 9. In this example there
are nine points, each line contains three points (so the n of Theorem 14 is
n = 3) and there are n? + n = 12 lines.
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In light of the couple of examples we have given so far, it is natural to ask
for what number n is there an affine geometry where each line has n points.

Definition 15. If A? is a an affine plane with only a finite number of points,
then its order is the number of points on a line. O

Thus Theorem 14 tells us that an affine plane of order n has n? points
and n? + n lines. For a positive result we have

Theorem 16. If n = p* where p is a prime number and k is a positive
integer, then there is an affine plane of order n. O

We will outline a proof of the above later in the term.
But not every n can be the order of a finite plane. The most general
known restriction is

Theorem 17 (Bruck-Ryser theorem). If an affine plane of order n exists
and n is of the form 4k + 1 or 4k + 2, then n is the sum of two squares.
(That is n = x> 4+ y? for some integers x and y.) O

For example 6 is of the form 4k+2 (where k = 1) but 6 can not be written
as 6 = 22 +y? (as you can see by a bit of trial trail and error). Thus there is
no affine plane of order 6. Likewise 14 = 4(3) + 2 is of the form 4k + 2, and
you can use trail an error to find that 14 can not be written as 14 = x2 + 32
(if x or y is > 4 then 2% + y? > 42 = 16 is too large. So you only have to
check the cases where z,y = 0,1,2,3.) Therefore there is no affine plane of
order 14.

Problem 15. Use the Bruck-Ryser Theorem to show that there is no affine
plane of order 22. ([

The smallest number not covered by the last two theorems is 10. It is
not a prime power, but it is the sum of two squares: 10 = 12 + 32. It was
a big deal in the 1980’s, when C. W. H. Lam, L. H. Thiel, and S. Swiercz

FIGURE 9. An affine plane with 9 points and 12 lines and each line
containing 3 points.
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[2] proved that there is no plane of order 10. Even the New York Times
had an article about the result (Dec. 20, 1988, Section 3, p. 1). If you want
more information Lam has a article [1] describing the history of the result.
A down side to this proof is that it is not directly human readable in that
it relies on a large computer search to check a vast number of special cases.

The next number not covered by the Bruck-Ryser Theorem is 12 which
in not of either of the forms 4k + 1 or 4k + 2. If is still unknown if there is
a affine plane of order 12 and this seems be be a vary hard question.
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