Test 3

Name:
Show your work! Answers that do not have a justification will receive no credit.

1. (20 points) Are the following true or false and give a short reason.
(a) If two triangles have the same angle sum, then they are congruent.
(b) In neutral geometry it is possible to prove that for any segment $\overline{A B}$ that there are three points M_{1}, M_{2}, and M_{3} so that $A * M_{1} * M_{2}, * M_{3} * B$ and $\overline{A M_{1}} \cong \overline{M_{1} M_{2}} \cong \overline{M_{2} M_{3}} \cong \overline{M_{3} B}$.
(c) In neutral geometry it is impossible to prove that given a point line ℓ and a point P not on ℓ that there is a least one line through P and parallel to ℓ.
(d) In neutral geometry it is possible to prove the (ASS) criterion for congruence of triangles. (That is if $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ have $\Varangle A \cong \Varangle A^{\prime}, \overline{A B} \cong \overline{A^{\prime} B^{\prime}}$ $\overline{B C} \cong \overline{B^{\prime} C^{\prime}}$ then $\left.\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}.\right)$
2. (20 points) Prove that two right triangles are congruent if the hypotenuse and a leg of one are congruent respectively to the hypotenuse and leg of the other.
3. (20 points) Prove that any segment $\overline{A B}$ has a midpoint. (You do not have to prove uniqueness.)
4. (20 points) Let $\triangle A B C$ be given and let $B * P * C$. Then show that $\triangle A B C$ has angle sum 180° then so does $\triangle A B P$.
5. (20 points) Let α be a circle with center A and β a circle with center $B \neq A$. Assume that α and β intersect in two points P and Q with are on opposite sides of $\overleftrightarrow{A B}$. Then prove $\overleftrightarrow{A B}$ and $\overleftrightarrow{P Q}$ are perpendicular.
