Test 2

Name:
Show your work! Answers that do not have a justification will receive no credit.

1. (10 points) Write the negations of the following statements:
(a) All right angles are congruent.
(b) For every line ℓ there and point P not on ℓ there is at at most one line m through P and parallel to ℓ.
(c) In any triangle the largest side is opposite the largest angle.
(d) P if and only if Q.
2. (10 points) Draw pictures of the following:
(a) Three rays $\overrightarrow{A B} A, \overrightarrow{A C}$ and $\overrightarrow{A D}$ so that $\overrightarrow{A D}$ is between $\overrightarrow{A B A}$ and $\overrightarrow{A C}$
(b) Four points distinct points A, B, C, and D so that $A * B * D$ and $A * D * C$.
3. (20 points) Prove Pasch's Theorem: If A, B and C are distinct noncollinear points and ℓ is a line intersecting $\overline{A B}$ at a point between A and B, then ℓ also intersects either $\overline{A C}$ or $\overline{B C}$.
4. (20 points) Let ℓ be a line and P a point not on ℓ. Show that there is a line m through P and perpendicular to ℓ.
5. (20 points) Let $\triangle A B C$ have $\Varangle A \cong \Varangle B$. Then show $\overline{A C} \cong \overline{B C}$
6. (20 points) Prove Segment Subtraction: If $A * B * C, D * E * F, \overline{A B} \cong \overline{D E}$, and $\overline{A C} \cong \overline{D F}$, then $\overline{B C} \cong \overline{E F}$.
