Axioms and Basic Results in Plane Geometry

Undefined Terms

Point, line, incidence, between, congruent.

Incidence Axioms

IA 1: For any pair of distinct points P and Q there is a unique line through P and Q.
IA 2: Any line has at least two points on it.
IA 3: There are three points A, B, C not all on the same line.

Betweenness Axioms

BA 1: If $A * B * C$, then A, B, and C are three distinct points all lying on the same line, and $C * B * A$.
BA 2: Given any two points B and D, there exist points A, C, and E on $\overleftrightarrow{B D}$ so that $A * B * D$, $B * C * D$, and $B * D * E$.
BA 3: If A, B, C are distinct points on the same line, then exactly one of them is between the other two.
Definition: If A and B are distinct points, then the segment $\overline{A B}$ is the set of points X so that $X=A, X=B$, or $A * X * B$.
Definition: If A and B are distinct points, then the ray $\overrightarrow{A B}$ is the segment $\overline{A B}$ together with the set of points X so that $A * B * X$.
Definition: If ℓ is a line and A, B are points not on ℓ, then A and B are on the same side of ℓ iff $A=B$ or the segment $\overline{A B}$ does not meet ℓ. They are on opposite sides of ℓ if $A \neq B$ and $\overline{A B}$ intersects ℓ.
BA 4 (Plane Separation): For any line ℓ and points A, B, and C not on ℓ :
(i) if A and B are one the same side of ℓ and B and C are on the same side of ℓ, then A and C are on the same side of ℓ
(ii) if A and B are on opposite sides of ℓ and B and C are on opposite sides of ℓ, then A and C are on the same side of ℓ.

Congruence Axioms

CA 1: If A and B are distinct points and if A^{\prime} is any point, then for each ray \vec{r} starting at A^{\prime} there is a unique point B^{\prime} on \vec{r} so that $B^{\prime} \neq A^{\prime}$ and $\overline{A B} \cong \overline{A^{\prime} B^{\prime}}$.
CA 2: If $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \cong \overline{E F}$, then $\overline{C D} \cong \overline{E F}$. If $\overline{A B} \cong \overline{C D}$ then $\overline{C D} \cong \overline{A B}$. Also any segment is congruent to itself.
CA 3: If $A * B * C, A^{\prime} * B^{\prime} * C^{\prime}, \overline{A B} \cong \overline{A^{\prime} B^{\prime}}$, and $\overline{B C} \cong \overline{B^{\prime} C^{\prime}}$, then $\overline{A C} \cong \overline{A^{\prime} C^{\prime}}$
CA 4: If Given any angle $\Varangle B A C$ (where, by definition of angle, $\overrightarrow{A B}$ is not opposite $\overrightarrow{A C}$), and given any ray $\overrightarrow{A^{\prime} B^{\prime}}$, there is a unique ray $\overrightarrow{A^{\prime} C^{\prime}}$ on a given side of the line $\overleftrightarrow{A^{\prime} B^{\prime}}$ so that $\Varangle B^{\prime} A^{\prime} C^{\prime} \cong \Varangle A B C$.
CA 5: If $\Varangle A \cong \Varangle B$ and $\Varangle A \cong \Varangle C$, then $\Varangle A \cong B$. If $\Varangle A \cong \Varangle B$, then $\Varangle B \cong \Varangle A$. Also any angle is congruent to itself.
Definition: Two triangles $\triangle A B C$ and $\triangle D E F$ are congruent (written $\triangle A B C \cong \triangle D E F$) iff $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}, \overline{A C \cong \overline{D F}, \Varangle A B C \cong \Varangle D E F, \Varangle B C A \cong \Varangle E F D \text {, and } \Varangle C B A \cong}$ $\Varangle F D E$.
CA 6 (SAS): If two sides and the included angle of a triangle are congruent respectively to two sides and the included angle of anther triangle, then the two triangles are congruent.

Axioms of Continuity

Circular Continuity Principle: If a circle γ has on point inside and one point outside of anther circle γ^{\prime}, then the two circles interest in two points.
Elementary Continuity Principle: If one endpoint of a circle is inside of a circle and the other is outside, then the segment interests the circle.

Archimedes' Axiom: If $\overline{A B}$ and $\overline{C D}$ are any segments, then there is number n so that if segment $\overrightarrow{C D}$ is laid off n times on the ray $\overrightarrow{A B}$, then a point E on $\overrightarrow{A B}$ is reached where $n \cdot C D \cong A E$ and $A * B * E$.
Aristotle's Axiom: Given and side of an acute angle and any segment $\overline{A B}$, there is a point Y on the given side of the angle such that if X is the foot of the perpendicular from Y to the other side of the angle, $\overline{X Y}>\overline{A B}$.
Important Corollary to Aristotle's Axiom: Let $\overrightarrow{A B}$ be any ray, P an point not colinear with A and B, and $\Varangle X V Y$ any acute angle. Then there exists a point R on the ray $\overrightarrow{A B}$ such that $\Varangle P R A<\Varangle X V Y$.
Dedekind's Axiom: Suppose the set of all points of a line ℓ is the union $\Sigma_{1} \cup \Sigma_{2}$ of two nonempty subsets such that no point of Σ_{1} is between two points of Σ_{2} and no point of Σ_{2} is between two points of Σ_{1}. Then there is a unique point O on ℓ so that if $P_{1} \in \Sigma_{1}, P_{2} \in \Sigma_{2}$, with P_{1}, P_{2}, and O distinct, then $P_{1} * O * P_{2}$.

Axiom of Parallelism

Hilbert's Parallel Axiom: For every line ℓ and every point P not on ℓ there is at most one line m through P and parallel to ℓ.

Basic Results About Incidence
Prop 2.1: If ℓ and m are distinct lines that are not parallel, then ℓ and m have exactly one point in common.
Definition: A set of lines \mathcal{S} is concurrent if there is a point P so that every member of ℓ of \mathcal{S} passes through P.
Prop 2.2: There exist three distinct lines that are not concurrent.
Prop 2.3: For every line there is a point not lying on it.
Prop 2.4: For every point there is at least one line not passing through it.
Prop 2.5: For every point P there exists at least two distinct lines that pass through P.

Basic Results About Betweenness

Prop 3.1: For every pair of distinct points A, B :
(i) $\overrightarrow{A B} \cap \overrightarrow{B A}=\overrightarrow{A B}$
(ii) $\overrightarrow{A B} \cup \overrightarrow{B A}=\overleftrightarrow{A B}$

Definition: Let ℓ be a line, and P a point not on ℓ. Then the half plane determined by ℓ and P is the set of points X that are on the same side of ℓ as P. The half plane determined by ℓ and P will also be called the side of ℓ of P. The line ℓ is said to bound any of its half planes.
Prop 3.2: Every line bounds exactly two half-planes and these half planes have no point in common.
Prop 3.3: If $A * B * C$ and $A * C * D$, then $B * C * D$ and $A * B * D$.
Corollary: If $A * B * C$ and $B * C * D$, then $A * B * D$ and $A * C * D$.
Prop 3.4 (Line separation property): If $C * A * B$ and ℓ is the line through A, B and C, then for every point P lying on ℓ, either P lies on the ray $\overrightarrow{A B}$ or the opposite ray $\overrightarrow{A C}$.
Pasch's Theorem: If $\triangle A B C$ is any triangle and ℓ is any line intersecting side $\overline{A B}$ in a point between A and B, then ℓ also intersects either side $\overline{A C}$ or side $\overline{B C}$. If C does not lie on ℓ, then ℓ does not intersect both $\overline{A C}$ and $\overline{B C}$.
Prop 3.5: Given $A * B * C$, then $\overline{A C}=\overline{A B} \cup \overline{B C}$ and B is the only point common to segments $\overline{A B}$ and $\overline{B C}$.
Prop 3.6: Given $A * B * C$. Then B is the only point common to the rays $\overrightarrow{B A}$ and $\overrightarrow{B C}$. Also $\overrightarrow{A B}=\overrightarrow{A C}$.

Definition: Given an angle $\Varangle C A B$, define a point D to be in the interior of $\Varangle C A B$ iff D is on the same side of $\overleftrightarrow{A C}$ as B and D is on the same side of $\overleftrightarrow{A B}$ as C.
Prop 3.7: Given an angle $\Varangle C A B$ and a point D lying on the line $\overleftrightarrow{B C}$. Then D is in the interior of $\Varangle C A B$ if and only if $B * D * C$.
Prop 3.8: If D is in the interior of $\Varangle C A B$, then;
(a) so is every point on $\overrightarrow{A D}$ except A,
(b) no point on the opposite ray to $\overrightarrow{A D}$ is in the interior of $\Varangle C A B$,
(c) if $C * A * E$, then B is in the interior of $\Varangle D A E$.

Definition: The ray $\overrightarrow{A D}$ is between rays $\overrightarrow{A B}$ and $\overrightarrow{A C}$ iff $\overrightarrow{A B}$ and $\overrightarrow{A C}$ are not opposite rays and D is interior to angle $\Varangle C A B$.
Crossbar Theorem: If $\overrightarrow{A D}$ is between $\overrightarrow{A C}$ and $\overrightarrow{A B}$, then $\overrightarrow{A D}$ intersects the segment $\overrightarrow{B C}$.
Definition: The interior of a triangle is the intersection of the interiors of its three angles. A point is in the exterior of the triangle iff it is not in the interior of the triangle and does not lie on any of the sides of the triangle.
Prop 3.9: (a) If a ray \vec{r} emanating from an exterior point of $\triangle A B C$ intersects side $\overline{A B}$ at a point between A and B, then also \vec{r} intersects side $\overline{A C}$ or $\overline{B C}$.
(b) If a ray emanates from an interior point of $\triangle A B C$, then if intersects one of the sides of $\triangle A B C$. If the ray does not go through a vertex of the triangle, then it only interests one of the sides of $\triangle A B E$.

Basic Results About Congruence

Corollary to SAS: Given $\triangle A B C$ and segment $\overline{D E} \cong \overline{A B}$, there is a unique point F on a given side of the line $\overleftrightarrow{D E}$ such that $\triangle A B C \cong \triangle D E F$.
Prop 3.10: If in triangle $\triangle A B C$ we have $\overline{A B} \cong \overline{A C}$, then $\Varangle B \cong \Varangle C$.
Prop 3.11 (Segment Subtraction): If $A * B * C, D * E * F, \overline{A B} \cong \overline{D E}$, and $\overline{A C} \cong \overline{D F}$, then $\overline{B C} \cong \overline{E F}$.
Prop 3.12: Given $\overline{A C} \cong \overline{D F}$, then for any point B between A and C, there is a unique point E between D and F so that $\overline{A B} \cong \overline{D E}$.
Definition: $\overline{A B}<\overline{C D}$ means there is a point E between C and D with $\overline{A B} \cong \overline{C E}$.
Prop 3.13:(SEGMENT OrDERING) (a) Exactly one of the following holds (trichotomy): $\overline{A B}<$ $\overline{C D}, \overline{A B} \cong \overline{\{ } C D\}$, or $\overline{A B}>\overline{C D}$.
(b) If $\overline{A B}<\overline{C D}$ and $\overline{C D} \cong \overline{E F}$, then $\overline{A B}<\overline{E F}$.
(c) If $\overline{A B}<\overline{C D}$ and $\overline{C D}<\overline{E F}$, then $\overline{A B}<\overline{E F}$.
(d) If $\overline{A B}<\overline{C D}$ and $\overline{C D}<\overline{E F}$, then $\overline{A B}<\overline{E F}$.

Definition: If two angles $\Varangle B A D$ and $\Varangle C A D$ have a common side $\overrightarrow{A D}$ and the two other sides $\overrightarrow{A B}$ and $\overrightarrow{A C}$ form opposite rays, the angles are supplements of each other, or supplementary angles.
Prop 3.14: Supplements of congruent angles are congruent.
Definition: An angle $\Varangle B A D$ is a right angle if it has a supplementary angle to which it is congruent.
Definition: For the definition of vertical angles see page 24 of the text.
Prop 3.15: (a) Vertical angles are congruent to each other.
(b) An angle congruent to a right angle is a right angle.

Definition: Two lines are perpendicular if they intersect at right angles.
Prop 3.16: For every line ℓ and every point P there there is a line through P and perpendicular to ℓ.

Prop 3.17 (ASA Criterion for Congruence): Given $\triangle A B C$ and $\triangle D E F$ with $\Varangle A \cong$ $\Varangle D, \Varangle C \cong \Varangle F$, and $\overline{A C} \cong \overline{D F}$. Then $\triangle A B C \cong \triangle D E F$.
Prop 3.18 (CONVERSE TO PROP 3.10): If in the triangle $\triangle A B C$ we have $\Varangle B \cong \Varangle C$, then $\overline{A B}$ and $\overline{A C}$ and $\triangle A B C$ is isosceles.
Prop 3.19 (Angle Addition): Given $\overrightarrow{B G}$ between $\overrightarrow{B A}$ and $\overrightarrow{B C}, \overrightarrow{E H}$ between $\overrightarrow{E D}, \overrightarrow{E F}$, $\Varangle C B G \cong \Varangle F E H$, and $\Varangle G B A \cong \Varangle H E D$. Then $\Varangle A B C \cong \Varangle D E F$.
Prop 3.20 (Angle Subtraction): Given $\overrightarrow{B G}$ between $\overrightarrow{B A}$ and $\overrightarrow{B C}, \overrightarrow{E H}$ between $\overrightarrow{E D}$ and $\overrightarrow{E F}, \Varangle C B G \cong \Varangle F E H$, and $\Varangle A B C \cong \Varangle D E F$. Then $\Varangle G B A \cong \Varangle H E D$.
Definition: $\Varangle A B C<\Varangle D E F$ means there is a ray $\overrightarrow{E G}$ between $\overrightarrow{E D}$ and $\overrightarrow{E F}$ such that $\Varangle A B C \cong \Varangle G E F$.
Prop 3.21 (Ordering of Angles): (a) Exactly one of the following holds (trichotomy): $\Varangle P<\Varangle Q, \Varangle P \cong \Varangle Q$, or $\Varangle P>\Varangle Q$.
(b) If $\Varangle P<\Varangle Q$ and $\Varangle Q \cong \Varangle R$, then $\Varangle P<\Varangle R$.
(c) If $\Varangle P \cong \Varangle Q$ and $\Varangle Q<\Varangle R$, then $\Varangle P<\Varangle R$.
(d) If $\Varangle P<\Varangle Q$ and $\Varangle Q<\Varangle R$, then $\Varangle P<\Varangle R$.

Prop 3.22 (SSS Criterion for Congruence): Given $\triangle A B C$ and $\triangle D E F$. If $\overline{A B} \cong \overline{D E}$, $\overline{B C} \cong \overline{E F}$, and $\overline{A C} \cong \overline{D F}$, then $\triangle A B C \cong \triangle D E F$.
Prop 3.23 (Euclid's Fourth Postulate): All right angles are congruent to each other.

Some Results in Neutral Geometry

Theorem 4.1 (Alternate Interior Angle Theorem): If two lines cut by a transversal have a pair of congruent alternate interior angles, then the two lines are parallel.
Corollary 1: Two lines perpendicular to the same line are parallel. Hence, the perpendicular dropped from a point P not on the line ℓ to ℓ is unique (and the point at which the perpendicular intersects ℓ is called its foot.
Corollary 2: If ℓ is a line and P a point not on ℓ, then there is at least one line through P and parallel to ℓ.
Theorem 4.2 (Exterior Angle Theorem): An exterior angle of a triangle is greater than either remote interior angle.
Proposition 4.1 (SAA Congruence Criterion): Given triangles $\triangle A B C$ and $\triangle D E F$ with $\overline{A C} \cong \overline{D F}, \Varangle A \cong \Varangle D$ and $\Varangle B \cong \Varangle E$. Then $\triangle A B C \cong \triangle D E F$.
Proposition 4.2: Two right triangles are congruent if the hypotenuse and a leg of one are congruent respectively to the hypotenuse and a leg of the other.
Proposition 4.3 (Midpoints): Every segment has a unique midpoint.
Proposition 4.4 (Bisectors): (a) Every angle has a unique bisector.
(b) Every segment has a unique perpendicular bisector.

Proposition 4.5: In a triangle $\triangle A B C$, the greater angle lies opposite the greater side and the greater side lies lies opposite the greater angle. That is $\overline{A B}>\overline{B C}$ iff $\Varangle C>\Varangle A$
Theorem 4.3 : A. There is a unique degree measure assigned to each angle so that
(0) $(\Varangle A)^{\circ}$ is a real number between 0° and 180°.
(1) $(\Varangle A)^{\circ}=90^{\circ}$ iff $\Varangle A$ is a right angle
(2) $(\Varangle A)^{\circ}=(\Varangle B)^{\circ}$ iff $\Varangle A \cong \Varangle B$
(3) If $\overrightarrow{A C}$ is interior to $\Varangle B A D$, then $(\Varangle B A D)^{\circ}=(\Varangle D A C)^{\circ}+(\Varangle C A B)^{\circ}$
(4) For every real number x between 0 and 180 there is an angle $\Varangle A$ with $(\Varangle A)^{\circ}=x^{\circ}$
(5) If $\Varangle A$ is supplementary to $\Varangle B$, then $(\Varangle A)^{\circ}+(\Varangle B)^{\circ}=180^{\circ}$
(6) $\Varangle A<\Varangle B$ iff $(\Varangle A)^{\circ}<(\Varangle B)^{\circ}$.
B. Given a segment $\overline{O I}$ (called the unit segment) then there is a unique way to of assigning a length to $|\overline{A B}|$ to each segment $\overline{A B}$ so that
(7) $|\overline{A B}|$ is a positive real number and $|\overline{O I}|=1$
(8) $|\overline{A B}|=|\overline{C D}|$ iff $\overline{A B} \cong \overline{C D}$
(9) $A * B * C$ iff $|\overline{A B}|+|\overline{B C}|=|\overline{A C}|$
(10) $\overline{A B}<\overline{C D}$ iff $|\overline{A B}|<|\overline{C D}|$
(11) For every positive real number x there is a segment $\overline{A B}$ with $|\overline{A B}|=x$.

Corollary 1: The sum of the angles of any two angles of a triangle is less than 180°.
Corollary 2 Triangle Inequality: If A, B, and C are three non-colinear points, then $|\overline{A C}|+|\overline{A B}| \geq|\overline{B C}|$.
Theorem 4.4 Saccheri-Legendre: The sum of the angles of a triangle is $\leq 180^{\circ}$.
Corollary 1: The sum of two angles of a triangles is less than or equal to the remote exterior angle.
Definition: The quadrilateral $\square A B C D$ is convex iff it has a pair of opposite sides, e.g., $A B$ and $C D$, such that $C D$ is contained in one of the half planes bounded by $\overleftrightarrow{A B}$ and $\overline{A B}$ is contained in on of the half-planes bounded by $\overleftrightarrow{C D}$.
Corollary 2: The sum of the measures of the angles in any convex quadrilateral is at most 360°.
Euclid's Postulate V: If two lines are intersected by a transversal in such a way that the sum of two interior angles on one side of the transversal is less than 180°, then the two lines meet on that side of the transversal.
Theorem 4.5: Euclid's fifth postulate \Longleftrightarrow Hilbert's parallel postulate.
Proposition 4.7: Hilbert's parallel postulate \Longleftrightarrow any line that intersects one of two parallel line intersects the other one.
Proposition 4.8: Hilbert's parallel postulate \Longleftrightarrow Converse to theorem 4.1 (which is the Alternate interiors angles theorem.)
Proposition 4.9: Hilbert's parallel postulate \Longleftrightarrow if t is transversal to both ℓ and $m, \ell \| m$, and $t \perp l$, then $t \perp m$.
Proposition 4.10: Hilbert's parallel postulate $\Longleftrightarrow k \| \ell, m \perp k$, and $n \perp \ell$, implies $m=n$ or $m \| n$.
Proposition 4.11: Hilbert's parallel postulate \Longrightarrow the sum of every triangle is 180°.
Definition: For any triangle $\triangle A B C$ the defect of $\triangle A B C$ is defined by $\delta(\triangle A B C)=180^{\circ}-$ $\left((\Varangle A)^{\circ}+(\Varangle B)^{\circ}+(\Varangle C)^{\circ}\right)$
Theorem 4.6 Additivity of the defect: Let $\triangle A B C$ be any triangle and let D be a point between A and B. Then $\delta(\triangle A B C)=\delta(\triangle A C D)+\delta(\triangle B C D)$
Corollary: With the same hypothesis as the last theorem, the angel sum of $\triangle A B C$ is 180° iff the angle sum of both of $\triangle A C D$ and $\triangle B C D$ is 180°.
Definition: A quadrilateral $\square A B C D$ is a rectangle iff all four of its angles are right angles.
Theorem 4.7: If there exists a triangle with angle sum 180°, then a rectangle exists. It a rectangle exists, the every triangle ha angle sum equal to 180°.
Corollary:If there exits a triangle with positive defect, then all triangles have positive defect.

