Axioms and Basic Results in Plane Geometry

Undefined Terms

Point, line, incidence, between, congruent.

Incidence Axioms

IA 1: For any pair of distinct points P and Q there is a unique line through P and Q.

IA 2: Any line has at least two points on it.

IA 3: There are three points A, B, C not all on the same line.

Betweenness Axioms

BA 1: If A * B * C, then A, B, and C are three distinct points all lying on the same line, and C * B * A.

BA 2: Given any two points *B* and *D*, there exist points *A*, *C*, and *E* on *BD* so that A * B * D, B * C * D, and B * D * E.

BA 3: If A, B, C are distinct points on the same line, then exactly one of them is between the other two.

Definition: If A and B are distinct points, then the **segment** \overline{AB} is the set of points X so that X = A, X = B, or A * X * B.

Definition: If A and B are distinct points, then the **ray** AB is the segment \overline{AB} together with the set of points X so that A * B * X.

Definition: If ℓ is a line and A, B are points not on ℓ , then A and B are on the same side of ℓ iff A = B or the segment \overline{AB} does not meet ℓ . They are on opposite sides of ℓ if $A \neq B$ and \overline{AB} intersects ℓ .

BA 4 (PLANE SEPARATION): For any line ℓ and points A, B, and C not on ℓ :

(i) if A and B are one the same side of ℓ and B and C are on the same side of ℓ , then A and C are on the same side of ℓ

(ii) if A and B are on opposite sides of ℓ and B and C are on opposite sides of ℓ , then A and C are on the same side of ℓ .

Congruence Axioms

CA 1: If A and B are distinct points and if A' is any point, then for each ray \overrightarrow{r} starting at A' there is a unique point B' on \overrightarrow{r} so that $B' \neq A'$ and $\overrightarrow{AB} \cong \overrightarrow{A'B'}$.

CA 2: If $\overline{AB} \cong \overline{CD}$ and $\overline{AB} \cong \overline{EF}$, then $\overline{CD} \cong \overline{EF}$. If $\overline{AB} \cong \overline{CD}$ then $\overline{CD} \cong \overline{AB}$. Also any segment is congruent to itself.

CA 3: If A * B * C, A' * B' * C', $\overline{AB} \cong \overline{A'B'}$, and $\overline{BC} \cong \overline{B'C'}$, then $\overline{AC} \cong \overline{A'C'}$

CA 4: If Given any angle $\not\triangleleft BAC$ (where, by definition of angle, AB is not opposite AC), and given any ray $\overrightarrow{A'B'}$, there is a unique ray $\overrightarrow{A'C'}$ on a given side of the line $\overrightarrow{A'B'}$ so that $\not\triangleleft B'A'C' \cong \not\triangleleft ABC$.

CA 5: If $a \cong a B$ and $a A \cong a C$, then $a A \cong B$. If $a A \cong a B$, then $a B \cong a A$. Also any angle is congruent to itself.

Definition: Two triangles $\triangle ABC$ and $\triangle DEF$ are **congruent** (written $\triangle ABC \cong \triangle DEF$) iff $\overline{AB} \cong \overline{DE}$, $\overline{BC} \cong \overline{EF}$, $\overline{AC} \cong \overline{DF}$, $\checkmark ABC \cong \checkmark DEF$, $\checkmark BCA \cong \checkmark EFD$, and $\checkmark CBA \cong \checkmark FDE$.

CA 6 (SAS): If two sides and the included angle of a triangle are congruent respectively to two sides and the included angle of anther triangle, then the two triangles are congruent.

Axioms of Continuity

Circular Continuity Principle: If a circle γ has on point inside and one point outside of anther circle γ' , then the two circles interest in two points.

Elementary Continuity Principle: If one endpoint of a circle is inside of a circle and the other is outside, then the segment interests the circle.

Archimedes' Axiom: If \overline{AB} and \overline{CD} are any segments, then there is number n so that if segment \overrightarrow{CD} is laid off n times on the ray \overrightarrow{AB} , then a point E on \overrightarrow{AB} is reached where $n \cdot CD \cong AE$ and A * B * E.

Aristotle's Axiom: Given and side of an acute angle and any segment \overline{AB} , there is a point Y on the given side of the angle such that if X is the foot of the perpendicular from Y to the other side of the angle, $\overline{XY} > \overline{AB}$.

Important Corollary to Aristotle's Axiom: Let AB be any ray, P an point not collinear with A and B, and $\gtrless XVY$ any acute angle. Then there exists a point R on the ray \overrightarrow{AB} such that $\gtrless PRA < \oiint XVY$.

Dedekind's Axiom: Suppose the set of all points of a line ℓ is the union $\Sigma_1 \cup \Sigma_2$ of two nonempty subsets such that no point of Σ_1 is between two points of Σ_2 and no point of Σ_2 is between two points of Σ_1 . Then there is a unique point O on ℓ so that if $P_1 \in \Sigma_1$, $P_2 \in \Sigma_2$, with P_1 , P_2 , and O distinct, then $P_1 * O * P_2$.

Axiom of Parallelism

Hilbert's Parallel Axiom: For every line ℓ and every point P not on ℓ there is at most one line m through P and parallel to ℓ .

Basic Results About Incidence

Prop 2.1: If ℓ and m are distinct lines that are not parallel, then ℓ and m have exactly one point in common.

Definition: A set of lines S is **concurrent** if there is a point P so that every member of ℓ of S passes through P.

Prop 2.2: There exist three distinct lines that are not concurrent.

Prop 2.3: For every line there is a point not lying on it.

Prop 2.4: For every point there is at least one line not passing through it.

Prop 2.5: For every point *P* there exists at least two distinct lines that pass through *P*.

Basic Results About Betweenness

Prop 3.1: For every pair of distinct points A, B:

(i) $\overrightarrow{AB} \cap \overrightarrow{BA} = \overline{AB}$ (ii) $\overrightarrow{AB} \cup \overrightarrow{BA} = \overrightarrow{AB}$

Definition: Let ℓ be a line, and P a point not on ℓ . Then the **half plane** determined by ℓ and P is the set of points X that are on the same side of ℓ as P. The half plane determined by ℓ and P will also be called the **side** of ℓ of P. The line ℓ is said to **bound** any of its half planes.

Prop 3.2: Every line bounds exactly two half-planes and these half planes have no point in common.

Prop 3.3: If A * B * C and A * C * D, then B * C * D and A * B * D.

Corollary: If A * B * C and B * C * D, then A * B * D and A * C * D.

Prop 3.4 (LINE SEPARATION PROPERTY): If C * A * B and ℓ is the line through A, B and

C, then for every point P lying on ℓ , either P lies on the ray AB or the opposite ray AC. **Pasch's Theorem:** If $\triangle ABC$ is any triangle and ℓ is any line intersecting side \overline{AB} in a point between A and B, then ℓ also intersects either side \overline{AC} or side \overline{BC} . If C does not lie on ℓ , then ℓ does not intersect both \overline{AC} and \overline{BC} .

Prop 3.5: Given A * B * C, then $\overline{AC} = \overline{AB} \cup \overline{BC}$ and B is the only point common to segments \overline{AB} and \overline{BC} .

Prop 3.6: Given A * B * C. Then B is the only point common to the rays BA and BC. Also $\overrightarrow{AB} = \overrightarrow{AC}$.

Definition: Given an angle $\diamondsuit CAB$, define a point *D* to be in the **interior** of $\diamondsuit CAB$ iff *D* is on the same side of \overrightarrow{AC} as *B* and *D* is on the same side of \overrightarrow{AB} as *C*.

Prop 3.7: Given an angle $\gtrless CAB$ and a point *D* lying on the line BC. Then *D* is in the interior of $\gtrless CAB$ if and only if B * D * C.

Prop 3.8: If *D* is in the interior of $\triangleleft CAB$, then;

- (a) so is every point on AD except A,
- (b) no point on the opposite ray to AD is in the interior of $\gtrless CAB$,
- (c) if C * A * E, then B is in the interior of $\triangleleft DAE$.

Definition: The ray AD is **between** rays AB and AC iff AB and AC are not opposite rays and D is interior to angle $\triangleleft CAB$.

Crossbar Theorem: If AD is between AC and AB, then AD intersects the segment \overline{BC} .

Definition: The **interior** of a triangle is the intersection of the interiors of its three angles. A point is in the **exterior** of the triangle iff it is not in the interior of the triangle and does not lie on any of the sides of the triangle.

Prop 3.9: (a) If a ray \overrightarrow{r} emanating from an exterior point of $\triangle ABC$ intersects side \overline{AB} at a point between A and B, then also \overrightarrow{r} intersects side \overline{AC} or \overline{BC} .

(b) If a ray emanates from an interior point of $\triangle ABC$, then if intersects one of the sides of $\triangle ABC$. If the ray does not go through a vertex of the triangle, then it only interests one of the sides of $\triangle ABE$.

Basic Results About Congruence

Corollary to SAS: Given $\triangle ABC$ and segment $\overline{DE} \cong \overline{AB}$, there is a unique point F on a given side of the line \overrightarrow{DE} such that $\triangle ABC \cong \triangle DEF$.

Prop 3.10: If in triangle $\triangle ABC$ we have $\overline{AB} \cong \overline{AC}$, then $\triangleleft B \cong \triangleleft C$.

Prop 3.11 (SEGMENT SUBTRACTION): If A * B * C, D * E * F, $\overline{AB} \cong \overline{DE}$, and $\overline{AC} \cong \overline{DF}$, then $\overline{BC} \cong \overline{EF}$.

Prop 3.12: Given $\overline{AC} \cong \overline{DF}$, then for any point *B* between *A* and *C*, there is a unique point *E* between *D* and *F* so that $\overline{AB} \cong \overline{DE}$.

Definition: $\overline{AB} < \overline{CD}$ means there is a point *E* between *C* and *D* with $\overline{AB} \cong \overline{CE}$.

Prop 3.13:(SEGMENT ORDERING) (a) Exactly one of the following holds (trichotomy): $\overline{AB} < \overline{CD}, \overline{AB} \cong \overline{\{CD\}}, \text{ or } \overline{AB} > \overline{CD}.$

(b) If $\overline{AB} < \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} < \overline{EF}$.

- (c) If $\overline{AB} < \overline{CD}$ and $\overline{CD} < \overline{EF}$, then $\overline{AB} < \overline{EF}$.
- (d) If $\overline{AB} < \overline{CD}$ and $\overline{CD} < \overline{EF}$, then $\overline{AB} < \overline{EF}$.

Definition: If two angles $\not\triangleleft BAD$ and $\not\triangleleft CAD$ have a common side AD and the two other sides \overrightarrow{AB} and \overrightarrow{AC} form opposite rays, the angles are **supplements** of each other, or **supplementary angles**.

Prop 3.14: Supplements of congruent angles are congruent.

Definition: An angle $\not\triangleleft BAD$ is a **right angle** if it has a supplementary angle to which it is congruent.

Definition: For the definition of vertical angles see page 24 of the text.

Prop 3.15: (a) Vertical angles are congruent to each other.

(b) An angle congruent to a right angle is a right angle.

Definition: Two lines are **perpendicular** if they intersect at right angles.

Prop 3.16: For every line ℓ and every point *P* there there is a line through *P* and perpendicular to ℓ .

Prop 3.17 (ASA CRITERION FOR CONGRUENCE): Given $\triangle ABC$ and $\triangle DEF$ with $\blacklozenge A \cong \diamondsuit D$, $\diamondsuit C \cong \diamondsuit F$, and $\overline{AC} \cong \overline{DF}$. Then $\triangle ABC \cong \triangle DEF$.

Prop 3.18 (CONVERSE TO PROP 3.10): If in the triangle $\triangle ABC$ we have $\gtrless B \cong \gtrless C$, then \overline{AB} and \overline{AC} and $\triangle ABC$ is isosceles.

Prop 3.19 (ANGLE ADDITION): Given \overrightarrow{BG} between \overrightarrow{BA} and \overrightarrow{BC} , \overrightarrow{EH} between \overrightarrow{ED} , \overrightarrow{EF} , $\cancel{CBG} \cong \cancel{FEH}$, and $\cancel{GBA} \cong \cancel{HED}$. Then $\cancel{ABC} \cong \cancel{DEF}$.

Prop 3.20 (ANGLE SUBTRACTION): Given BG between BA and BC, EH between ED and \overrightarrow{FF} $\downarrow CPC \simeq \downarrow EFH$ and $\downarrow APC \simeq \downarrow DFE$. Then $\downarrow CPA \simeq \downarrow HFD$

 $EF, \blacklozenge CBG \cong \blacklozenge FEH, \text{ and } \blacklozenge ABC \cong \diamondsuit DEF. \text{ Then } \blacklozenge GBA \cong \diamondsuit HED.$

Definition: ABC < ABF means there is a ray *EG* between *ED* and *EF* such that $ABC \cong ABC \cong ABF$.

Prop 3.21 (ORDERING OF ANGLES): (a) Exactly one of the following holds (trichotomy): $\Rightarrow P < \Rightarrow Q$, $\Rightarrow P \cong \Rightarrow Q$, or $\Rightarrow P > \Rightarrow Q$.

(b) If $\triangleleft P < \ \triangleleft Q$ and $\ \triangleleft Q \cong \ \triangleleft R$, then $\ \triangleleft P < \ \triangleleft R$.

(c) If $\triangleleft P \cong \triangleleft Q$ and $\triangleleft Q < \triangleleft R$, then $\triangleleft P < \triangleleft R$.

(d) If $\triangleleft P < \ \triangleleft Q$ and $\ \triangleleft Q < \ \triangleleft R$, then $\ \triangleleft P < \ \triangleleft R$.

Prop 3.22 (SSS CRITERION FOR CONGRUENCE): Given $\triangle ABC$ and $\triangle DEF$. If $\overline{AB} \cong \overline{DE}$, $\overline{BC} \cong \overline{EF}$, and $\overline{AC} \cong \overline{DF}$, then $\triangle ABC \cong \triangle DEF$.

Prop 3.23 (EUCLID'S FOURTH POSTULATE): All right angles are congruent to each other. Some Results in Neutral Geometry

Theorem 4.1 (ALTERNATE INTERIOR ANGLE THEOREM): If two lines cut by a transversal have a pair of congruent alternate interior angles, then the two lines are parallel.

Corollary 1: Two lines perpendicular to the same line are parallel. Hence, the perpendicular dropped from a point P not on the line ℓ to ℓ is unique (and the point at which the perpendicular intersects ℓ is called its **foot**.

Corollary 2: If ℓ is a line and P a point not on ℓ , then there is at least one line through P and parallel to ℓ .

Theorem 4.2 (EXTERIOR ANGLE THEOREM): An exterior angle of a triangle is greater than either remote interior angle.

Proposition 4.1 (SAA CONGRUENCE CRITERION): Given triangles $\triangle ABC$ and $\triangle DEF$ with $\overline{AC} \cong \overline{DF}$, $\gtrless A \cong \gtrless D$ and $\gtrless B \cong \gtrless E$. Then $\triangle ABC \cong \triangle DEF$.

Proposition 4.2: Two right triangles are congruent if the hypotenuse and a leg of one are congruent respectively to the hypotenuse and a leg of the other.

Proposition 4.3 (MIDPOINTS): Every segment has a unique midpoint.

Proposition 4.4 (BISECTORS): (a) Every angle has a unique bisector.

(b) Every segment has a unique perpendicular bisector.

Proposition 4.5: In a triangle $\triangle ABC$, the greater angle lies opposite the greater side and the greater side lies lies opposite the greater angle. That is $\overline{AB} > \overline{BC}$ iff $\mathbf{A}C > \mathbf{A}A$

Theorem 4.3 : A. There is a unique degree measure assigned to each angle so that

- (0) $(\diamondsuit A)^{\circ}$ is a real number between 0° and 180° .
- (1) $(\not\triangleleft A)^\circ = 90^\circ$ iff $\not\triangleleft A$ is a right angle
- (2) $(\diamondsuit{A})^{\circ} = (\diamondsuit{B})^{\circ}$ iff $\diamondsuit{A} \cong \diamondsuit{B}$

(3) If AC is interior to ABAD, then $(ABAD)^\circ = (ADAC)^\circ + (ACAB)^\circ$

(4) For every real number x between 0 and 180 there is an angle A with $(A)^{\circ} = x^{\circ}$

(5) If $\triangleleft A$ is supplementary to $\triangleleft B$, then $(\triangleleft A)^{\circ} + (\triangleleft B)^{\circ} = 180^{\circ}$

(6) $A < A = A = A^{\circ} = A^{\circ$

B. Given a segment \overline{OI} (called the *unit segment*) then there is a unique way to of assigning a length to $|\overline{AB}|$ to each segment \overline{AB} so that

4

(7) $|\overline{AB}|$ is a positive real number and $|\overline{OI}| = 1$

(8) $\overline{|AB|} = \overline{|CD|}$ iff $\overline{AB} \cong \overline{CD}$

(9) A * B * C iff $|\overline{AB}| + |\overline{BC}| = |\overline{AC}|$

(10) $\overline{AB} < \overline{CD}$ iff $|\overline{AB}| < |\overline{CD}|$

(11) For every positive real number x there is a segment \overline{AB} with $|\overline{AB}| = x$.

Corollary 1: The sum of the angles of any two angles of a triangle is less than 180° .

Corollary 2 TRIANGLE INEQUALITY: If A, B, and C are three non-collinear points, then $|\overline{AC}| + |\overline{AB}| \ge |\overline{BC}|$.

Theorem 4.4 SACCHERI-LEGENDRE: The sum of the angles of a triangle is $\leq 180^{\circ}$.

Corollary 1: The sum of two angles of a triangles is less than or equal to the remote exterior angle.

Definition: The quadrilateral $\Box ABCD$ is **convex** iff it has a pair of opposite sides, e.g.,

AB and CD, such that CD is contained in one of the half planes bounded by \overrightarrow{AB} and \overrightarrow{AB} is contained in on of the half-planes bounded by \overrightarrow{CD} .

Corollary 2: The sum of the measures of the angles in any convex quadrilateral is at most 360°.

Euclid's Postulate V: If two lines are intersected by a transversal in such a way that the sum of two interior angles on one side of the transversal is less than 180°, then the two lines meet on that side of the transversal.

Theorem 4.5: Euclid's fifth postulate \iff Hilbert's parallel postulate.

Proposition 4.7: Hilbert's parallel postulate \iff any line that intersects one of two parallel line intersects the other one.

Proposition 4.8: Hilbert's parallel postulate \iff Converse to theorem 4.1 (which is the ALTERNATE INTERIORS ANGLES THEOREM.)

Proposition 4.9: Hilbert's parallel postulate \iff if t is transversal to both ℓ and m, $\ell || m$, and $t \perp l$, then $t \perp m$.

Proposition 4.10: Hilbert's parallel postulate $\iff k \| \ell, m \perp k$, and $n \perp \ell$, implies m = n or $m \| n$.

Proposition 4.11: Hilbert's parallel postulate \implies the sum of every triangle is 180°.

Definition: For any triangle $\triangle ABC$ the **defect** of $\triangle ABC$ is defined by $\delta(\triangle ABC) = 180^{\circ} - ((\measuredangle A)^{\circ} + (\measuredangle B)^{\circ} + (\gneqq C)^{\circ})$

Theorem 4.6 ADDITIVITY OF THE DEFECT: Let $\triangle ABC$ be any triangle and let D be a point between A and B. Then $\delta(\triangle ABC) = \delta(\triangle ACD) + \delta(\triangle BCD)$

Corollary: With the same hypothesis as the last theorem, the angel sum of $\triangle ABC$ is 180° iff the angle sum of both of $\triangle ACD$ and $\triangle BCD$ is 180°.

Definition: A quadrilateral $\Box ABCD$ is a **rectangle** iff all four of its angles are right angles. **Theorem 4.7:** If there exists a triangle with angle sum 180°, then a rectangle exists. It a rectangle exists, the every triangle ha angle sum equal to 180°.

Corollary: If there exits a triangle with positive defect, then all triangles have positive defect.