## Final

Show your work! Answers that do not have a justification will receive no credit.

1. (15 points)
(a) Negate the following two statements:
i. All good students do fine.
ii. Either the parallel postulate holds, or some triangle has angle sum $30^{\circ}$.
(b) Give the converse of: $\quad P$ implies $Q$
(c) Give an exmaple of valid implication whose converse is not valid.
2. (20 points) True or false and give a short reason for your answer.
(a) Using just the incidence axioms it s possible to prove that all lines have at least four points.
(b) If $A * B * C$ and $C * D * E$, then $A * D * E$
(c) Two distint lines $\ell$ and $m$ can intersect in at most one point.
(d) Two distint rays $\vec{r}$ and $\vec{q}$ can inteset in at most one point.
3. (15 points)
(a) Give a model of the incidence axioms where the parallel postulate is true.
(b) Give a model of the incidence axioms the parallel postulate is false.
(c) Give a brief explination of why it is impossiable to prove the parallel postulate from the incidencse axioms.
4. (30 points) Prove Pasch's Theorem: If $A, B$ and $C$ are distinct noncollinear points and $\ell$ is a line intersecting $\overline{A B}$ at a point between $A$ and $B$, then $\ell$ also intersects either $\overline{A C}$ or $\overline{B C}$.
5. (30 points) Prove that the base angles of an isosocles triangle are congruent.
6. (30 points) Let $\triangle A B C$ have $\overline{A B} \cong \overline{A C}$ and let $M$ be the midpoint of $\overline{B C}$. Then prove $\triangle A B M$ is a right triangle.
7. (30 points) Prove Angle Substraction: Given $\overrightarrow{B G}$ between $\overrightarrow{B A}$ and $\overrightarrow{B C}, \overrightarrow{E H}$ between $\overrightarrow{E D}$ and $\overrightarrow{E F}, \Varangle C B G \cong \Varangle F E H$, and $\Varangle A B C \cong \Varangle D E F$. Then $\Varangle G B A \cong$ $\Varangle H E D$.
8. (30 points) Prove that if a rectangle exists, then there is a triangle that has angle sum $180^{\circ}$.
