Final

Show your work! Answers that do not have a justification will receive no credit.

- 1. (15 points)
 - (a) Negate the following two statements:
 - i. All good students do fine.

ii. Either the parallel postulate holds, or some triangle has angle sum 30° .

(b) Give the converse of: P implies Q

(c) Give an exmaple of valid implication whose converse is not valid.

- 2. (20 points) True or false and give a short reason for your answer.
 - (a) Using just the incidence axioms it s possible to prove that all lines have at least four points.

(b) If A * B * C and C * D * E, then A * D * E

(c) Two distint lines ℓ and m can intersect in at most one point.

(d) Two distint rays \overrightarrow{r} and \overrightarrow{q} can inteset in at most one point.

3. (15 points)

(a) Give a model of the incidence axioms where the parallel postulate is true.

(b) Give a model of the incidence axioms the parallel postulate is false.

(c) Give a brief explination of why it is impossiable to prove the parallel postulate from the incidence axioms.

4. (30 points) Prove PASCH'S THEOREM: If A, B and C are distinct noncollinear points and ℓ is a line intersecting \overline{AB} at a point between A and B, then ℓ also intersects either \overline{AC} or \overline{BC} .

5. (30 points) Prove that the base angles of an isosocles triangle are congruent.

6. (30 points) Let $\triangle ABC$ have $\overline{AB} \cong \overline{AC}$ and let M be the midpoint of \overline{BC} . Then prove $\triangle ABM$ is a right triangle.

7. (30 points) Prove ANGLE SUBSTRACTION: Given \overrightarrow{BG} between \overrightarrow{BA} and \overrightarrow{BC} , \overrightarrow{EH} between \overrightarrow{ED} and \overrightarrow{EF} , $\diamondsuit CBG \cong \measuredangle FEH$, and $\diamondsuit ABC \cong \measuredangle DEF$. Then $\And GBA \cong \measuredangle HED$.

8. (30 points) Prove that if a rectangle exists, then there is a triangle that has angle sum 180° .