Mathematics 527 Test \#3

Name:
Show your work to get credit. An answer with no work will not get credit.
(1) (5 points) State the difference formula relating $f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ and $f\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]$ and $f\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
(2) (5 points) How are n order divided differences $f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ related to the n-th derivative $f^{(n)}$.
(3) (5 points) State the intermediate value theorem.
(4) (20 points) Let $\phi(h)$ be a functions so that

$$
\phi(h)=L+a_{6} h^{6}+a_{8} h^{8}+a_{10} h^{10}+\cdots
$$

Then find a function ψ so that

$$
\psi(h)=L+b_{8} h^{8}+b_{10} h^{10}+\cdots
$$

for some constants b_{8} and b_{10} and give the relationship between a_{8}, a_{10} and b_{8} and b_{10}.
(5) (15 points) What is the error term in the approximation

$$
f^{\prime \prime}(x) \approx \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

(6) (10 points) If g is continuous on $[a, b]$ and $x_{1}, x_{2}, x_{3} \in[a, b]$ the explain why there a $\xi \in[a, b]$ such that

$$
2 f\left(x_{1}\right)+3 f\left(x_{2}\right)+4 f\left(x_{3}\right)=9 f(\xi) .
$$

(7) (15 points) An upper sum with n equally spaced points is used to approximate $\int_{0}^{2} \sqrt{1+x^{3}} d x$. How large do we need to take n insure the error is less than .01 ?
(8) (15 points) How large must n be chosen in the composite trapezoid rule to insure that the error in computing $\int_{0}^{3} \frac{d x}{1+x}$ is less than .001?
(9) (10 points) Express $\int_{0}^{\alpha} \frac{\sin x}{x} d x$ as a series in α

