Mathematics 527 Test \#2

Show your work to get credit. An answer with no work will not get credit.
(1) (5 points) State the n-th order Taylor theorem about x and with remainder for $f(x+h)$.
(2) (5 points) Let f be a function on $[a, b]$ and x_{0}, \ldots, x_{n} distinct points of $[a, b]$. Then what does it mean for the polynomial $p(x)$ to interpolate f at the points x_{0}, \ldots, x_{n} ?
(3) (5 points) Let f be $n+1$ times differentiable on $[a, b]$ and let $p(x)$ be the polynomial of degree $\leq n$ that interpolates f at the distinct points $x_{0}, x_{1}, \ldots, x_{n} \in[a, b]$. What is the formula for the error $f(x)-p(x)$?
(4) (10 points) Let x_{0}, \ldots, x_{n} be distinct points of \mathbf{R}.
(a) Define the cardinal functions $\ell_{0}, \ldots, \ell_{n}$ determined by these points.
(b) If $n \geq 2$ explain why $\sum_{i=0}^{n} x_{i}^{2} \ell_{i}(x)=x^{2}$.
(5) (15 points) Construct Newton's interpolating polynomial for the data (you do not have to simplify your answer)

$$
\begin{array}{c|c|c|c|c}
x & -1 & 1 & 3 & 4 \\
\hline y & -9 & 2 & -3 & -4
\end{array}
$$

(6) (20 points) Complete the following table of divided differences.

x	$f[]$	$f[]$,	$f[,]$,	$f[,,]$,
1	-1			
3	5			
5	11			
6	59			

(7) (20 points) A interpolating polynomial of degree 20 is used to approximate $\sin (x)$ on the interval $[-1,1]$ at 21 equally spaced nodes. How accurate will this be?
(8) (20 points) Determine the error term in the approximation

$$
f^{\prime}(x) \approx \frac{1}{2 h}[4 f(x+h)-3 f(x)-f(x+2 h)]
$$

