(1) (5 points) State the n-th order Taylor theorem about x and with remainder for $f(x + h)$.

(2) (5 points) Let f be a function on $[a, b]$ and x_0, \ldots, x_n distinct points of $[a, b]$. Then what does it mean for the polynomial $p(x)$ to interpolate f at the points x_0, \ldots, x_n?

(3) (5 points) Let f be $n + 1$ times differentiable on $[a, b]$ and let $p(x)$ be the polynomial of degree $\leq n$ that interpolates f at the distinct points $x_0, x_1, \ldots, x_n \in [a, b]$. What is the formula for the error $f(x) - p(x)$?

(4) (10 points) Let x_0, \ldots, x_n be distinct points of \mathbb{R}.
 (a) Define the cardinal functions ℓ_0, \ldots, ℓ_n determined by these points.

 (b) If $n \geq 2$ explain why $\sum_{i=0}^{n} x_i^2 \ell_i(x) = x^2$.
(5) (15 points) Construct Newton’s interpolating polynomial for the data (you do not have to simplify your answer)

\[
\begin{array}{l|cccc}
 x & -1 & 1 & 3 & 4 \\
 \hline
 y & -9 & 2 & -3 & -4 \\
\end{array}
\]

(6) (20 points) Complete the following table of divided differences.

\[
\begin{array}{c|c|c|c|c}
 x & f[\] & f[,,] & f[,,,] & f[,,,,] \\
 \hline
 1 & -1 & & & \\
 3 & 5 & & & \\
 5 & 11 & & & \\
 6 & 59 & & & \\
\end{array}
\]
(7) (20 points) A interpolating polynomial of degree 20 is used to approximate \(\sin(x) \) on the interval \([-1, 1]\) at 21 equally spaced nodes. How accurate will this be?

(8) (20 points) Determine the error term in the approximation

\[
f'(x) \approx \frac{1}{2h} [4f(x + h) - 3f(x) - f(x + 2h)]
\]