Mathematics 527 Test \#1

Name:
Show your work to get credit. An answer with no work will not get credit.
(1) (5 points) State the n-th order Taylor theorem about x and with remainder for $f(x+h)$.
(2) (5 points) State the mean value theorem.
(3) (10 points) How many terms of the Taylor series for $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ are needed to compute $\sqrt{e}=e^{.5}$ to 5 decimal places? Explain your answer.
(4) (10 points) Let

$$
\alpha=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}
$$

How many terms of this series is needed to compute α to 10 decimal places? Explain your answer.
(5) (15 points) Define the following:
(a) $x_{k} \rightarrow$ r linearly.
(b) $x_{k} \rightarrow r$ quadratically.
(c) r is a fixed point of $g(x)$.
(6) (10 points) The bisection method is used to solve for a root of $f(x)=0$ in the initial interval $[5,10]$. How many steps are needed to find the root accurate to 8 decimal places? Explain your answer.
(7) (15 points) Let $g:[a, b] \rightarrow[a, b]$ be differentiable with $\left|g^{\prime}(x)\right| \leq .1$ and we wish to solve the equation $g(x)=x$. Let r be the root, let $x_{0}=(b-a) / 2$ be the midpoint of $[a, b]$, and define

$$
x_{1}=g\left(x_{0}\right), \quad x_{2}=g\left(x_{1}\right), \quad x_{3}=g\left(x_{2}\right), \ldots
$$

(a) Show that $\left|r-x_{k}\right| \leq .1\left|x_{k-1}-r\right|$. Hint: Mean value theorem.
(b) Explain why $\left|r-x_{k}\right| \leq(.1)^{k}(b-a) / 2$.
(8) (15 points) In the following figure we start Newton's method at some initial point x_{0} and form the points $x_{0}, x_{1}, x_{2} \ldots$ in the usual manner. For the following choices of x_{0} if Newton's method will converge, and if so to what point it will converge.

Figure 1

(a) $x_{0}=.75$
(b) $x_{0}=-.5$
(c) $x_{0}=3$.
(9) (10 points) If we have a sequence x_{k} from an application of Newton's method to find the root of r of $f(x)=$, so that the errors $e_{k}=r-x_{k}$ satisfy $\left|e_{k+1}\right| \leq(.1) e_{k}^{2}$ and the initial error $e_{0} \leq 1$, then how many steps are needed to commute r accurate to 50 decimal places?

Number of steps $=$ \qquad
(10) (5 points) State the quotient remainder theorem for polynomials.

