Mathematics 527 Test 3 Name:

You will need a calculator. You may use one page (both sides) of notes during the test.

1. (25 points.) Let

$$
\int_{0}^{3} f(x) d x \approx w_{0} f\left(x_{0}\right)+w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)+w_{3} f\left(x_{3}\right)
$$

be the Gaussian quadrature method using four nodes in the interval $[0,3]$.
(a) Explain carefully what this means. That is how are the nodes and weights chosen and for what class of functions is the formula exact.
(b) What is the sum $w_{0}+w_{1}+w_{2}+w_{3}$? Prove your answer is correct using the properties Gaussian quadrature.
2. (10 points) Let $f(x, y)$ be a function so that

$$
\begin{aligned}
& f(1,2)=1, \quad f_{x}(1,2)=2, \quad f_{y}(1,2)=3, \\
& f_{x x}(1,2)=4, \quad f_{x y}(1,2)=5, \quad f_{y y}(1,2)=6 .
\end{aligned}
$$

Then give an approximation to $f(1.2,1.9)$ using Taylor's theorem.
3. (15 points) Let $x(t)$ satisfy the differential equation $\dot{x}(t)=f(t, x(t))$. The give formula's for $\ddot{x}(t)$ and $\dddot{x}(t)$ that only involve $f(t, x)$ and its partial derivatives.

$$
\begin{aligned}
\ddot{x}(t) & = \\
\dddot{x}(t) & =
\end{aligned}
$$

4. (20 points)
(a) Apply 2 steps of the four order Runge-Kutta method to the initial value problem

$$
\dot{x}(t)=f(t), \quad x(0)=0
$$

to give a formula for an approximation to $x(1)$.
(b) Explain why this gives an approximation to $\int_{0}^{1} f(s) d s$.

