Mathematics 527 Test 2 Name:

\qquad
You will need a calculator. You may use one page (both sides) of notes during the test.

1. (25 points.) A function $f(x)$ is only known by the table of values:

x	1	3	4
$f(x)$	2	1	5

(a) What is the polynomial $p(x)$ of degree ≤ 2 that interpolates this data.
(b) Give an estimate of $f(1.5)$ and give a brief explanation of why you believe this estimate is reasonable.
(c) Give an estimate for the derivative $f^{\prime}(2)$.
(d) Approximate $\int_{1}^{4} f(x) d x$ by
i. The trapezoid rule
ii. and $\int_{1}^{4} p(x) d x$.
(e) Do you have an opinion as to which of these approximations to $\int_{1}^{4} f(x) d x$ might give the best estimate to the correct value?
2. (15 points.) Let $p_{n}(x)$ be the polynomial that interpolates the function $f(x)=e^{-x}$ on the interval $[0,2]$ at $n+1$ equally spaced nodes. Then how large to we have to take n so that the error in approximating e^{-x} by $p_{n}(x)$ is $\leq 10^{-6}$?
3. (15 points.) Let $f(x)$ be a function with derivatives of all orders. Let

$$
\varphi(h)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} .
$$

(a) Let $\varphi(h)=f^{\prime \prime}(x)+E(h)$ where $E(h)$ is the error term. Use Taylor's theorem to derive a formula for the error term $E(h)$.
(b) Assuming that $\varphi(h)$ can be expanded as

$$
\varphi(x)=f^{\prime \prime}(x)+a_{2}(x) h^{2}+a_{4}(x) h^{4}+a_{6}(x) h^{6}+\cdots
$$

then find an approximation to $f^{\prime \prime}(x)$ that is of order $O\left(h^{4}\right)$.
4. (15 points.) How large to you have to take n in the trapezoid rule to compute the integral $\int_{0}^{3} e^{-x^{2}} d x$ to five decimal places?
5. (10 points.) Let $T(n)$ be the trapezoid sum for the integral $\int_{a}^{b} f(x) d x$ on the interval $[a, b]$ for a partition $\mathcal{P}=\left\{a=x_{0}, x_{1}, \ldots, x_{2^{n}}=b\right\}$ of 2^{n} equally spaced intervals. Derive the recursive formula:

$$
T(n)=\frac{1}{2} T(n-1)+h \sum_{k=0}^{2^{n-1}-1} f\left(x_{2 k+1}\right)
$$

where $h=\frac{b-a}{2}$.
6. (15 Points) Approximate $\int_{0}^{.5} \frac{\sin (x)}{x} d x$ to five decimal places by use of Taylor's theorem.

