Show your work! Answers that do not have a justification will receive no credit.
1.(30 points) Find a particular solution to each of the following:
(a) $y^{\prime \prime}-8 y^{\prime}+25 y=4 \cos (3 x)$
(b) $y^{\prime \prime}+4 y^{\prime}-8 y=3 x^{2}-4 x+9$
(c) $y^{\prime \prime}-y^{\prime}-2 y=3+4 e^{2 x}$
2. (15 points) The functions $y_{1}=x$ and $y_{2}=x^{2}$ are solutions to $x^{2} y^{\prime \prime}-2 y^{\prime}+2 y=0$. Find the general solution to $x^{2} y^{\prime \prime}-2 y^{\prime}+2 y=\frac{3}{x}$
3. (15 points) The function $y_{1}=x$ is a solution to $5 x^{2} y^{\prime \prime}+x y^{\prime}-y=0$. Find the general solution to this equation.
4. (10 points) Let $L[y]=y^{\prime \prime}+p y^{\prime}+q y$. Then show that $L\left[c_{1} y_{1}+c_{2} y_{2}\right]=$ $c_{1} L\left[y_{1}\right]+c_{2} L\left[y_{2}\right]$.
5. (15 points) A mass of weighting 12 lbs is attached both a vertically suspended spring with a spring constant of $k=6$ and a dashpot that provides 3 lbs of resistance for every foot per second of velocity (that is the dashpot constant is $c=3$). If the mass is pulled down 1 ft below its static equilibrium position and released form rest,
(a) Find a formula for the position of the mass after t seconds. (Use $\left.g=32 \mathrm{ft} / \mathrm{sec}^{2}\right)$.
6. (15 points). A mass weighing 100 lb is attached to the end of a spring with spring constant $k=.01$. A force of $F=F_{0} \cos (\omega t)$ acts on the mass. At what value of ω will resonance occur? (That is what is the value of ω leads to unbounded solutions?) (Note it may be possible to answer this question without find the complete solution to the equation.

