Mathematics 174 Test \#2

Name:
Show your work to get credit. An answer with no work will not get credit.
(1) (20 Points)
(a) State the quotient remainder theorem.
(b) Define precisely the following:
(i) $n \operatorname{div} d$
(ii) $n \bmod d$
(iii) $\lfloor x\rfloor$
(iv) $\lceil x\rceil$
(2) (10 Points) Compute the following:
(a) $45 \operatorname{div} 13=$
(b) $-29 \bmod 12=$
(c) $\lfloor 39 / 8\rfloor=$
(d) $\lceil-75 / 32\rceil=$
(3) (5 Points) Show that $\sqrt{7}$ is irrational. You many use the following: Proposition: If n is an integer and $7 \mid n^{2}$, then $7 \mid n$.
(4) (5 Points) Show that if $n \bmod 6=4$ then $\left\lceil\frac{n}{6}\right\rceil=\frac{n+2}{6}$
(5) (5 Points) Show that if the sum of three numbers is greater then 30, then at least one of the numbers is greater than 10 .
(6) (10 Points) For the following either give a proof or a counterexample.
(a) The difference of two irrational numbers is irrational.
(b) The difference of a rational and an irrational number is irrational.
(7) (10 Points) Compute the following
(a) $\sum_{k=2}^{5}\left(2 k^{2}+3\right)$
(b) $\prod_{m=1}^{5} \frac{2 m-1}{2 m+1}$
(c) $\sum_{k=1}^{20}\left(\frac{2}{k}-\frac{2}{k+1}\right)$
(8) (5 Points) What is a formula for the general term a_{k} of the sequence that starts

$$
\frac{3}{2}, \frac{-5}{4}, \frac{7}{6}, \frac{-9}{8}, \frac{11}{10}, \cdots
$$

(9) (10 Points) Write the following using summation or product notation.
(a) $3^{2}-4^{2}+5^{2}-6^{2}+7^{2}-8^{2}+9^{2}-10^{2}+11^{2}-12^{2}$
(b) $1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15$.
(c) $3+5+7+\cdots+2 n+1$
(10) (5 Points) Use induction to show that $9^{n}-1$ is divisible by 8 for all $n \geq 1$.
(11) (10 Points) Use induction to show that the sum of the first n odd numbers is n^{2}. In symbols this means to show that

$$
1+3+5+\cdots+2 n-1=n^{2}
$$

