Mathematics 174 Test \#1

Name:
Show your work to get credit. An answer with no work will not get credit.
(1) (5 Points) Make a truth table for $(p \vee q) \rightarrow(p \wedge q)$.

(2) (5 Points) Use a truth table to determine if the following argument is valid.

$$
\begin{aligned}
& (p \wedge q) \rightarrow r \\
& p \vee q \\
\therefore & r
\end{aligned}
$$

(3) (10 Points) Rewrite the following formally (that is with symbols and labeling the variables) and determine if it is valid argument.

If Sally solved the problem correctly, then Sally obtained the answer $z=54$.
Sally obtained the answer $z=54$.
\therefore Sally solved the problem correctly.
Formal restatement:

Valid or invalid?
Justification:
(4) (15 Points) Write out the negations of the following sentences:
(a) If x is an integer, then $x(x+1)$ is even.
(b) The sum of any two irrational numbers is irrational.
(c) Every mathematics student studies hard.
(d) For any student, if the student likes football, then this has been a good year for the student.
(e) There is a student that does not study, but gets A's.
(5) (10 Points) Define the following
(a) n is an even number.
(b) n is an odd number.
(c) n is a prime number.
(d) n is a composite number.
(e) b is a factor of n.
(6) (5 Points) Is $p \leftrightarrow \sim q$ logically equivalent to $(p \wedge \sim q) \vee(\sim p \wedge q)$. Justify your answer. answer
Justification:
(7) (5 Points) Change the repeating decimal $4.545454545 \ldots$ to a ratio of interers.
(8) (5 Points) Change $53 A D_{16}$ to base 10 .
(9) (5 Points) Change 789_{10} to base 2 .
(10) (35 Points) For each of the following statements say if is true or false. If true give a proof. If false give a counterexample.
(a) The sum of four consective integers is even.

Ture or False?
Proof or counterexample:
(b) The sum of two odd numbers is divisable by 3 .

Ture or False? \qquad
Proof or counterexample:
(c) For real numbers x and $y,(x+y)^{3}=x^{3}+y^{3}$.

Proof or counterexample:
(d) If n is odd then $n(n+1)$ is even.

Ture or False?
Proof or counterexample:
(e) If $n=2 k+3$ with k an integer, then $n^{2}-1$ is divisable by 4 .

Ture or False?
Proof or counterexample:

