\qquad
Show your work! Answers that do not have a justification will receive no credit.

1. (15 points) Compute the following integrals (if an integral diverges say so):
(a) $\int_{-\infty}^{0} x^{2} e^{2 x} d x$.
(b) $\int_{0}^{2} \frac{d \theta}{2-\theta}$
(c) $\int_{-1}^{2} \frac{2 d v}{v}$
2. (10 points) Find the sums of the following series
(a) $1000+1000(1.05)+1000(1.05)^{2}+\cdots+1000(1.05)^{29}$
(b) $\sum_{k=3}^{\infty} \frac{3}{4^{k}}$
3. (15 points) For what values of x to the following series converge
(a) $\sum_{n=0}^{\infty} x^{n} 4^{n}$
(b) $\sum_{n=1}^{\infty} \frac{n(x-2)^{n}}{3^{n}}$
4. (10 points) Find the third order Taylor polynomial for the function $f(x)=\sqrt{x}$ at the point $x=9$.
5. (10 points) Let $f(x)$ be a function so that $f(1)=-1, f^{\prime}(1)=3$ and $f^{\prime}(1)=-2$.
(a) Draw a graph of $y=f(x)$ near $x=1$.
(b) Give the best approximation you can for $f(1.01)$.
6. (10 points) Compute the following
(a) $\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x}$
(b) $\lim _{x \rightarrow \infty} \frac{x^{100}}{(1.001)^{x}}$
7. (20 points) The probability that a light bulb burns out during its first t weeks of use has the probability density function

$$
p(t)= \begin{cases}\frac{1}{40} e^{\frac{-t}{40}} & t \geq 0 \\ 0 & t<0\end{cases}
$$

(a) What is the probability that the a bulb lasts a year (52 weeks)?
(b) What is the cumulative distribution function?
(c) What is the median length of life of a light bulb?
(d) What is the mean length of life of a light bulb?
8. (10 points) How many terms of the series

$$
1-\frac{1}{2^{3}}+\frac{1}{3^{3}}-\frac{1}{4^{3}}+\frac{1}{5^{3}}-\frac{1}{6^{3}}+\cdots \pm \frac{1}{n^{3}} \cdots
$$

do we need to be sure that we have the sum accurate to 6 decimal places?

Extra Credit (7 points) A ball is dropped straight down form a height of 10 feet and keeps bouncing so that each bounce is $\frac{3}{4}$ the height of the bounce before (so that the first bounce is 7.5 feet). What is the total distance the ball covers by the time it stops bouncing?

