The error term in Simpson's rule is

$$
\mid \int_{a}^{b} f(x) d x-(\text { Simpson's rule }) \left\lvert\, \leq \frac{M(b-a)^{5}}{2880 n^{4}}\right.
$$

where n is the number of subintervals used, and M is a number such that $\left|f^{(4)}(x)\right| \leq M$ for $a \leq x \leq b$. For the function

$$
f(x)=7+\frac{x^{6}}{30}
$$

how large do we need to take n so that we are sure that Simpson's rule approximates $\int_{1}^{4}+f(x) d x$ accurate to five decimal places.

