Homework Due Monday Febuary 12

All answers must be in the form of a sentence to get credit.

1. Read sections 11.1 and 11.2. The basic theme here is that by the fundamental theorem of calculus we can compute integrals $\int_{a}^{b} f(x) d x$ exactly if wee can find an antiderivative F of f. To be precise if $F^{\prime}(x)=f(x)$ then $\int_{a}^{b} f(x) d x=F(b)-F(a)$. So we are now going to lean tricks for finding antiderivatives. We started this by finding the derivatives of $\ln x, \arcsin (x), \arctan (x)$ which gives us the antiderivatives of the functions $1 / x, 1 / \sqrt{1-x^{2}}$ and $1 /\left(1+x^{2}\right)$. This is basically what is covered in section 11.1. In section 11.2 we will learn the method of substitution which is the antiderivative version of the chain rule.
2. Pages $621-622 \# 7, \# 18$
3. Pages $632-633 \# 1, \# 2, \# 3$

Homework Due Monday Febuary 12

All answers must be in the form of a sentence to get credit.

1. Read sections 11.1 and 11.2. The basic theme here is that by the fundamental theorem of calculus we can compute integrals $\int_{a}^{b} f(x) d x$ exactly if wee can find an antiderivative F of f. To be precise if $F^{\prime}(x)=f(x)$ then $\int_{a}^{b} f(x) d x=F(b)-F(a)$. So we are now going to lean tricks for finding antiderivatives. We started this by finding the derivatives of $\ln x, \arcsin (x), \arctan (x)$ which gives us the antiderivatives of the functions $1 / x, 1 / \sqrt{1-x^{2}}$ and $1 /\left(1+x^{2}\right)$. This is basically what is covered in section 11.1. In section 11.2 we will learn the method of substitution which is the antiderivative version of the chain rule.
2. Pages $621-622 \# 7, \# 18$
3. Pages $632-633 \# 1, \# 2, \# 3$

Homework Due Monday Febuary 12

All answers must be in the form of a sentence to get credit.

1. Read sections 11.1 and 11.2. The basic theme here is that by the fundamental theorem of calculus we can compute integrals $\int_{a}^{b} f(x) d x$ exactly if wee can find an antiderivative F of f. To be precise if $F^{\prime}(x)=f(x)$ then $\int_{a}^{b} f(x) d x=F(b)-F(a)$. So we are now going to lean tricks for finding antiderivatives. We started this by finding the derivatives of $\ln x, \arcsin (x), \arctan (x)$ which gives us the antiderivatives of the functions $1 / x, 1 / \sqrt{1-x^{2}}$ and $1 /\left(1+x^{2}\right)$. This is basically what is covered in section 11.1. In section 11.2 we will learn the method of substitution which is the antiderivative version of the chain rule.
2. Pages $621-622 \# 7, \# 18$
3. Pages 632-633 \#1, \#2, \#3
