
MATH 142 A Brief Introduction to Vectors Spring, 1995

While many quantities can be adequately described by a single number (mass,
temperature, barometric pressure, speed, time, GPA, population), others seem to
require two, or even more numbers for a full description. Some of these are velocity
(how fast, and in which direction), force (how strong, and in which direction),
multi-vitamins (how much of each of A, B, C, D, E, etc.), TV audience share (what
% is watching each channel), animal or forest management (the number in each
age or height class), income taxes (the population in each tax bracket), and so on.
Indeed models of a modern economy may involve thousands of numbers to give
a complete description. We will begin with the simple case of just two numbers,
but as we shall see many of the ideas carry over without difficulty to the more
general situation. You will quickly notice that this handout is not complete–many
important ideas are explored only in the context of problems for you to work on.
Bring your questions about these to class. In addition there will be the usual sorts
of exercises on which you will get to practice computational skills.

A vector is just an ordered pair of real numbers: v = (a, b). Since boldface is
not practical in handwritten work, one often writes −→v , or v

∼
or v instead. There are

a few special vectors that have symbols of their own: the zero vector is 0 = (0, 0),
ı̂ = (1, 0), ̂ = (0, 1). Of course, it looks like there is a danger of confusing vectors
with the coordinates of points in the plane; but it turns out that the context always
makes things clear (and sometimes we even do want to have both meanings at the
same time!). Our first example of a vector actually comes from geometry: if P is
the point (x, y), and Q is the point (x′, y′), then the displacement vector

−→
PQ

is the vector (x′ − x, y′ − y). All we are doing here is recording the net change in
position of a particle if moves (somehow, not necessarily in a straight line) from
the point P to the point Q. Note that since we are only considering net change
in position, we can forget about the points P and Q; the same displacement could
actually take place anywhere in the plane. It is convenient to represent such a
vector geometrically as an arrow from the point P (which is called the tail) to the
point Q (which is called the tip). We can calculate the length of this arrow very
easily by the Pythagorean theorem to be

√
(x′ − x)2 + (y′ − y)2. More generally

the magnitude or size of a vector v = (a, b) is |v| =
√
a2 + b2. It is easy to see

that the zero vector is the only one that has magnitude 0. It is conventional to put
little hats on those vectors such as ı̂ and ̂ that have magnitude 1; such vectors are
called unit vectors.

By themselves vectors are not terribly interesting. What makes them useful is
that we can perform many of the usual arithmetic or algebraic operations with
them. Here are the two most basic ones. Let us take v = (a, b) and w = (c, d).

(1) Vector addition: v + w = (a+ c, b+ d).
(2) Scalar multiplication: If r is a real number, rv = (ra, rb).
(3) Vector subtraction: We abbreviate (−1)v as−v. Then w−v = w+(−v).

In the following problems you will investigate these operations.

Basic properties. Pretty much all the usual things work. Show that v + 0 = v,
v + (−v) = 0, and that v + w = w + v. Show that 0v = 0, r(v + w) = rv + rw,
and (rs)v = r(sv), where s is another real number. If u is yet another vector,
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show that u + (v + w) = (u + v) + w. We can also decompose vectors: show that
v = aı̂ + b̂. In fact in some texts (usually in engineering it seems) the notation
(a, b) is never used; instead all vectors are written in their decomposed form aı̂+b̂.
The individual pieces aı̂ and b̂ are called the components of v.

Geometric interpretation. Here we are working with displacement vectors. Con-
vince yourself that vector addition of two displacements v and w corresponds to
the overall displacement from the tail of v to the tip of w when we place the tail
of w at the tip of v. What happens if we perform the displacements by placing
the tail of v at the tip of w? Suppose you put the tails of v and w at the same
point. Show that the arrow for v + w (also for w + v) runs from this point to
the opposite corner of the parallelogram that has v on opposite sides and w on
the other two sides. This is called the parallelogram law for vector addition. It
turns out to be a useful way to describe how forces combine, but for displacements
the idea of one vector following after the other is better. This is especially true
for vector subtraction: show how to represent w − v as an arrow by considering
that this is the vector that you need to add to v in order to get w. Describe the
geometric meaning of rv; what happens when r is negative? Finally, show what
vector decomposition means geometrically.

Vectors representing forces. Imagine two young Girl Scouts pulling a little red
wagon loaded with Girl Scout cookies. They are each pulling on the handle with a
force of 10 units (if you think about it, we don’t have near as good intuition about
units of force as we do time and distance–I sure have no idea how much a newton is
on a human scale, and while ft-lbs are of human scale they are bad terminology for
understanding physics correctly). How much force is exerted and in what direction
if they are pulling at a 30◦ angle from the center line, one on one side and one on
the other? How would your answer be different if the angle was 90◦ or 0◦? What
if one is pulling at 10◦ and the other at 20◦?

Parametric equations and position vectors. Up to now when we have thought
about motion it has always been rectilinear, that is, the particle was constrained
to move back and forth along a straight line. In real life most motion occurs in two
(or even three) dimensions. In this case its motion is described by two separate
functions of time: x(t) and y(t). The equations x = x(t) and y = y(t) are called
the parametric equations for the path of the particle, and t is called the parameter.
Any such pair of equations in which x and y are expressed in terms of the same
variable, which need not be time, are called parametric equations. We can track a
moving particle by its displacement from the origin at time t; this is the position
vector r(t) = (x(t), y(t)) = x(t)ı̂ + y(t)̂. This is our first example of a vector-
valued function; instead of putting in a number t and getting a value f(t), we are
putting in a number and getting out a vector. Fortunately as we shall see such
functions are no harder to work with than ordinary functions.

Velocity vectors. Imagine a particle traveling along a curved path in the plane.
Fix a time t and draw the vectors r(t), r(t + ∆t), and (1/∆t)(r(t + ∆t) − r(t))
for a moderate size ∆t (of course you’ll want to use what you learned about vector
subtraction and scalar multiplication above). Do this for a smaller ∆t, and then for
an even smaller one. What seems to be happening geometrically as ∆t approaches
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zero? If you want to make things more specific, try using r(t) = (t, t2). What
curve is this particle following? We shall actually define the derivative of the
position vector, or by another name the velocity vector, to be v(t) = r′(t) =
lim∆t→0(1/∆t)(r(t+ ∆t)− r(t)).

In the specific example, can you confirm that v(t) = r′(t) = (1, 2t)? It is not to
hard to see that in general for r(t) = (x(t), y(t)) = x(t)ı̂+ y(t)̂, we obtain r′(t) =
(x′(t), y′(t)) = x′(t)ı̂+ y′(t)̂. Physically what this is saying is that velocity can be
computed in each component separately. In general, the derivative of any vector-
valued function f(t) = (f1(t), f2(t)) is simply computed by f ′(t) = (f ′1(t), f ′2(t)),
that is, one computes the derivative in each component separately.

One of the most important facts about the derivative in the first term was the
microscope equation. It holds for vector valued functions also:

∆f ≈ f ′(a)∆t

where ∆f = f(a+ ∆t)− f(a) is the change in f and ∆ is the change in t.

Dot product. So far we have avoided multiplying vectors, and there is a very
good reason for this! There just isn’t any way to do it that behaves like ordinary
multiplication. There are, however, certain operations that behave a little bit like
multiplication. The first of these is called the dot product or scalar product.
For v = (a, b) and w = (c, d) the dot product is v ·w = ac+ bd. The first thing to
notice is that the answer is no longer a vector–the dot product of two vectors is a
number, that is, a scalar! Another peculiarity is that the dot product can be zero,
even when neither vector is zero; consider, for instance, ı̂ · ̂. Nevertheless there
are several properties that continue to be true for this funny product. If r is a real
number, v and w are as above, and u = (e, f), show that v · (w+u) = v ·w+v ·u,
v · w = w · v, and (rv) · w = v · (rw) = r(v · w). Perhaps the most interesting
result is that the dot product of a vector with itself is related closely to its length:
show that v · v = |v|2.

Projection and orthogonal decomposition. If you look back at the Girl Scout
problem, perhaps you can see that the pulling force that really counted was the part
of it that was directed forward; the part that pulled sideways was wasted, so to
speak. What do we mean by talking about these “parts”? The basic idea goes back
to the decomposition of a vector that we mentioned earlier, only instead of using ı̂
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and ̂ we will use perpendicular vectors that are more appropriate to our situation.
Suppose one of those Girl Scouts is sitting on a nice smooth slide (if you must think
like a physicist, set a heavy block on a frictionless inclined plane). If her mass is 20
Kg, then the force of gravity F pulling her directly vertically has a magnitude of
196 newtons (i.e., 196 Kg-m/sec2; this comes from the equation F = mg, where g is
the acceleration due to gravity, directed vertically with a magnitude of 9.8 m/sec2).
We can view this force as a vector sum of two separate forces, one parallel to the
slide which causes her to move, and the other perpendicular to the slide, pulling
her right into the slide (of course this is cancelled out by the resistance of the slide
itself, which has to do with the molecular structure of the metal and so on). Let
us call the parallel component F‖ and the perpendicular component F⊥. We are
simply saying that there is a decomposition F = F‖+F⊥. Such a decomposition is
called orthogonal because the components are perpendicular (orthogonal, normal)
to one another.

It would be instructive at this point to make yourself some more diagrams that
illustrate these vectors for slides at different inclinations θ. Our problem is to find
a way to compute the magnitude of the effective force F‖. First, show that the
angle between F and F⊥ is just θ. Then it is clear that |F⊥| = |F| cos θ (why?).
Finally, how can you find |F‖|? Now that you know the force on the girl, you
can compute her acceleration, velocity, position, and so on (but since this isn’t a
physics class we won’t do all that). By the way, this is how Galileo actually did his
experiments on the effects of gravity; he didn’t just drop balls off towers!

The story doesn’t end here. Suppose we didn’t know the angle θ, but we were
in a situation where vectors F and D were known, and we wanted to decompose
F into components parallel and perpendicular to D. This occurs, for example, if
we want to calculate the work done by the force F in displacing an object by an
amount D. Since only the force in the direction of D contributes to the work,
W = (force)(distance) = |F‖||D| = (|F| cos θ)|D|, and we need to compute either
F‖ or cos θ. (You might wonder why force in a certain direction doesn’t cause
motion in exactly the same direction–but think about pushing a shopping cart
whose wheels are locked in the wrong direction, or the force of gravity on a person
constrained to move along a slide!)
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According to the Law of Cosines, the general property of vectors that |v|2 = v·v,
and the various other algebraic properties of the dot product mentioned above, we
have

|F−D|2 = |F|2 + |D|2 − 2|F||D| cos θ

(F−D) · (F−D) = F · F + D ·D− 2|F||D| cos θ

F ·F−F ·D−D · F + D ·D = F · F + D ·D− 2|F||D| cos θ

−2F ·D = −2|F||D| cos θ,

which leads to the formula that shows why the dot product is so important:

(F) F ·D = |F||D| cos θ.

If we know F and D the left hand side is very easy to compute–it’s just a little
easy arithmetic. The right hand side contains the geometric (length and angle)
information, and in particular from it we can compute the cosine of the angle
between the two vectors. (As you might imagine, one frequently can exploit this by
making “two hands” arguments.) Then we see that the formula for work becomes
very simple: W = |F||D| cos θ = F·D. But now we should get a little bit suspicious.
Dot products can turn out to be negative. What would negative work mean? The
answer turns out to be fairly simple. In all the pictures so far θ has been an acute
angle (0 ≤ θ ≤ π/2), and therefore cos θ has not been negative. But we might have
a situation like this:

Then cos θ < 0, and the work comes out to be negative. So our very first formula for
work wasn’t quite correct: we should have said W = ±|F‖||D|, where the sign is +
if F‖ is aligned with D, and − if it is backwards. Roughly speaking, the idea is this:
if an apple falls to the ground, gravity has done some work (making the apple fall
faster and faster, or to be fancy, giving the apple a nice dose of kinetic energy which
you can feel if it bonks you). But if we pick the apple up, we are doing the work
(against gravity, or again to be fancy, we are giving the apple potential energy);
in this sense our moving the apple opposite to the force of gravity is undoing the
work that gravity did. [If this all sounds ridiculous, ask your physics professor for
a better explanation.]

Anyhow, forgetting about work, if F and D are just a couple of vectors, we do
get a nice formula for F‖, the vector projection of F on D. If û is a unit vector
in the direction of D, then F‖ = ±|F‖|û = (|F| cos θ)û. As we saw in the exercises,
û = (1/|D|)D, so

F‖ =
(
|F| cos θ
|D|

)
D =

(
|F||D| cos θ
|D|2

)
D

=
(

F ·D
D ·D

)
D.
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Later on we shall find many applications for vector projection. One should also
note that the signed length of F‖, or |F| cos θ, is sometimes called the scalar pro-
jection of F on D. If someone asks you to compute “the projection” you should
always check which of these quantities they mean. Just one last remark: once we
have computed F‖ we can immediately compute F⊥ (how?), and hence obtain the
orthogonal decomposition of F relative to D. (Whew! that was a long section–don’t
panic if it seems a little much at first.)

Transformations. So far we have seen functions that accept a number t as input
and produce a vector f(t) as output. We can go go one step further by considering
functions that take vectors as input and produce vectors as output. If we think of
vectors as displacements from the origin, and just look at what happens to their tips,
such a function amounts to putting in points of the plane and getting out points of
the plane. In other words, we have a certain transformation of the plane. This isn’t
really so strange. For example, one transformation that you are all familiar with is
rotation, say by π/2 in the counterclockwise direction. This transformation carries
0 to 0, ı̂ to ̂, and ̂ to−ı̂. How can we describe such transformations? One way is to
give a formula. The rotation transformation can be described by T (x, y) = (−y, x)
(check that this works!). Can you produce a formula for reflection across the x-
axis? How about a rotation by π/6 counterclockwise? Or one that pushes every
point twice as far as it was from the origin, but along the same line through the
origin? We will only deal with linear transformations for now; these are ones that
have formulas of the type T (x, y) = (ax+ by, cx+dy), and include all the examples
we have mentioned so far.

It turns out there is an efficient way to represent these transformations. We
simply collect all the coefficients in a tidy little box called a matrix, or an array,

if you happen to be a computer person. In this case we have A =
[
a b
c d

]
. We also

rewrite the vector v = (x, y) as the matrix v =
[
x
y

]
(the first form is known as a

row vector and the second as a column vector–it is useful to switch back and forth).

Then T (x, y) = T (v) is given by matrix multiplication Av =
[
ax+ by
cx+ dy

]
. Notice

the result is a column vector, but if we want to we can switch it back to row vector
form (ax+ by, cx+ dy). (By the way, Maple is really adamant about this; it hates
writing column vectors if it can possibly avoid it, maybe because it takes up too
much space on the screen. It will insist that Av is (ax+by, cx+dy).) To remember
how matrix multiplication works, it is handy to think of it as really nothing more
than a bunch of dot products. Each row (vector) inside A gets “dotted” in its
turn with the column vector v. You should check that our first rotation example

comes from using the matrix A =
[

0 −1
1 0

]
. Flipping across the x-axis comes from

the matrix A =
[

1 0
0 −1

]
. In the exercises you will get to work out some more

examples.
So far the transformations that we have considered are so nice that we can

understand how they work on the whole plane (which, by the way mathematicians
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like to abbreviate by R2) all at once. But some more complicated transformations
are easier to understand if we look at how they transform just a piece of the plane
such as the unit square with corners at (0, 0), (1, 0), (1, 1), and (0, 1).
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