Vectors and parametric equations

- 1. Let $\mathbf{v} = (3, 4)$, $\mathbf{w} = (-2, 6)$, and $\mathbf{u} = (-1, -3)$. Compute:
 - a. $\mathbf{v} + \mathbf{w}$, $\mathbf{v} \mathbf{w}$, and $|\mathbf{v}|$.
 - b. a vector of length one (a unit vector) that points in the direction of \mathbf{v} .
 - c. a vector with twice the magnitude of ${\bf v}\,,$ but pointing in the opposite direction.
 - d. two unit vectors perpendicular to \mathbf{v} .
 - e. the point Q if **w** represents the displacement vector \overrightarrow{PQ} and P is the point (-1, -1).
 - f. the scalars r and s so that $\mathbf{w} = r\mathbf{v} + s\mathbf{u}$. Illustrate with a sketch of all the vectors involved.
 - g. $\mathbf{u} \cdot \mathbf{w}$, $\mathbf{u} \cdot \mathbf{v}$, and $\mathbf{v} \cdot \mathbf{w}$.
- 2. Suppose $\mathbf{A} = 2\hat{\boldsymbol{i}} 3\hat{\boldsymbol{j}}$ and $\mathbf{B} = 3\hat{\boldsymbol{i}} + 4\hat{\boldsymbol{j}}$.
 - a. Write a unit vector in the direction of \mathbf{A} .
 - b. If Q is the point (6, 4), and **A** represents the displacement vector \overrightarrow{PQ} , find the coordinates of the point P.
 - c. Express $5\mathbf{A} 3\mathbf{B}$ in terms of \hat{i} and \hat{j} . Sketch all the vectors involved.
- 3. If \mathbf{u} , \mathbf{v} , and \mathbf{w} are as above, and a particle moves so that its position vector is $\mathbf{r}(t) = \mathbf{u} + t\mathbf{v}$, where is the particle at time t = 0, t = 1, t = 3/2, t = -1?
 - a. What is its velocity vector $\mathbf{v}(t)$ and speed (the scalar $|\mathbf{v}(t)|$)?
 - b. Write the parametric equations for the motion.
 - c. Describe the path of the motion by making a sketch, and by finding an equation in just the variables x and y (that is, eliminate the parameter t from the equations for x and y).
 - d. Give parametric equations that describe motion along the same path, but in the opposite direction.
- 4. A particle moves so that $\mathbf{r}(t) = \cos t \hat{i} + \sin t \hat{j} = (\cos t, \sin t)$.
 - a. Plot the particle's position for at least 8 values of t in the interval $0 \leq t \leq 2\pi$.
 - b. Describe the path of the particle, including its equation in the variables x and y only.
 - c. Compute the velocity vector $\mathbf{v}(t)$, speed ($|\mathbf{v}(t)|$), and acceleration vector $\mathbf{a}(t) = \mathbf{v}'(t)$. Show $\mathbf{r}(t)$, $\mathbf{v}(t)$, and $\mathbf{a}(t)$ on a sketch of the path for several different times t. If the tails of $\mathbf{v}(t)$ and $\mathbf{a}(t)$ are placed at the tip of $\mathbf{r}(t)$, what do you notice about their geometric relationships to one another? Can you explain physically why $\mathbf{a}(t)$ points the way it does?
 - c. Give parametric equations for the motion of a particle that is moving along the same path, but in the opposite direction.
 - d. What is the curve parameterized by $x(t) = a \cos t$, $y(t) = a \sin t$, if a is a positive constant?

- 5. A particle moves so that $x(t) = t^3$ and y(t) = t.
 - Give the position vector, velocity vector, and speed at time t. a.
 - b. Describe the path of the motion; give its equation in x and y.
 - Give parametric equations for the motion of a particle that is moving along c. the same path, but in the opposite direction.
 - Suppose the particle is moving along the same path, but $y(t) = e^t$. What d. is x(t) in this case? How does this motion differ from the one described in part (a) of this problem?
- 6. Suppose a curve that is given parametrically by (x(t), y(t)) is locally linear, so the derivative $\frac{dy}{dx}$ exists everywhere.
 - If $\frac{dy}{dx} = \infty$ at a point, what does this tell you about the appearance of the curve near that point? (Look back to volume I of the text.) a.
 - Express $\frac{dy}{dt}$ in terms of $\frac{dy}{dx}$ and $\frac{dx}{dt}$. Where does this relationship come b. from?
 - Express $\frac{dy}{dx}$ in terms of $\frac{dy}{dt}$ and $\frac{dx}{dt}$. Use your formula to compute $\frac{dy}{dx}$ in terms of t for the curves of problems (3), (4), and (5). c.
 - d.
 - Use your formula to convert $\sqrt{1 + (\frac{dy}{dx})^2} dx$ to $\sqrt{(\)^2 + (\)^2} dt$. Find the length of the path of motion in problem (3) from t = -1 to e. t = 2.
 - Derive the formula for the circumference of the circle $x^2 + y^2 = a^2$. f.
- 7. Use curves.ms to plot the curve $x(t) = t \sin t$, $y(t) = 1 \cos t$ for $-2\pi \leq t \leq 2\pi$. Compute the length of this curve. Suggestion: do it for just one bump, and then use symmetry. The trig identity $\sin^2 \frac{t}{2} = \frac{1}{2}(1 - \cos t)$ could be useful. Can you imagine how this curve could be produced in real life?
- A moth is flying towards a lamp (conveniently located at (0,0)), but its 8. a. guidance system is a little bit strange: it always flies at an angle of 45° to the line of sight of the lamp, and it always keeps the lamp on its right hand (wing?) side. Describe the path of this moth to its doom.
 - If a particle moves so that $\mathbf{r}(t) = (e^{-t/5} \sin t, e^{-t/5} \cos t)$, compute $\mathbf{v}(t)$, b. and the angle between $\mathbf{r}(t)$ and $\mathbf{v}(t)$ (hints for using Maple to do these calculations are in curves.ms). What must the angle between $-\mathbf{r}(t)$ and $\mathbf{v}(t)$ therefore be equal to? How are parts (a) and (b) of this problem related?
- 9. Return once again to the vectors of problem (1) and (2).
 - Compute the angles between each two of the three vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} , a. and also between \mathbf{A} and \mathbf{B} .
 - Compute the work done if a force given by \mathbf{w} acts on an object through a b. displacement given by \mathbf{v} .
 - Compute the work done if a force given by \mathbf{A} acts on an object through a с. displacement given by \mathbf{B} .