Mathematics 141 Test #1Name:Show your work to get credit.An answer with no work will not get credit.

(1) (10 points) Compute the following limits: 3x + 1

(a)
$$\lim_{x \to 2} \frac{3x+1}{x^2-6} =$$

(b)
$$\lim_{t \to 0} \frac{2\cos(2t)}{4 + \sin(2t)} =$$

(c)
$$\lim_{h \to 0} \frac{(3+h)^2 - 3^2}{h} =$$

(d)
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} =$$

(e)
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} =$$

(f)
$$\lim_{x \to \infty} \frac{2x^2 + 7x - 9}{3x^2 - 5x + 2} =$$

(g)
$$\lim_{x \to -\infty} \frac{4x+1}{x^4+16} =$$

(h)
$$\lim_{x \to 0} 4x \cot(3x) =$$

(i)
$$\lim_{t \to 3^{-}} \frac{t^2 + 7}{t - 3} =$$

(2) (40 points) Compute the following derivatives. You do not have to simplify your answers. (a) $y = 5x^4 - 7x^3 + 4x^2 + 5x - 9$

$$y' =$$

(b)
$$y = 7x^{-4} + 5\pi^{-3}$$

 $y' =$

(c)
$$C(q) = \frac{5}{q^3} - \frac{4}{q^4}$$

 $C'(q) =$

(d)
$$y' = 5\sqrt{x} - \sqrt[3]{x}$$

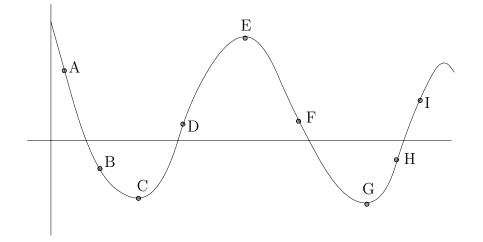
 $y' =$

(e)
$$y = (x^2 + 1)(4x^3 + 2)$$

 $y' =$

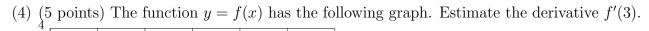
(f)
$$y = 3(x^3 + 2)^2$$

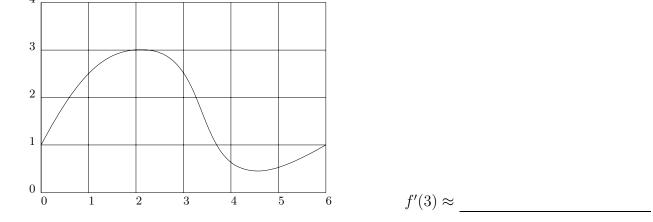
 $y' =$


(g)
$$y = \frac{3}{x^2 + x + 1}$$
$$y' =$$

(h)
$$w = (z^2 + 1)(\sqrt{z} + 3)$$

 $w' =$


(i)
$$R(t) = \frac{2t^3 + t}{t^2 + 3t}$$
$$R'(t) =$$


(j)
$$y = (x+1)(x^2+1)(x^3+1)$$

 $y' =$

(3) (5 points) Let y = f(x) have the following graph.

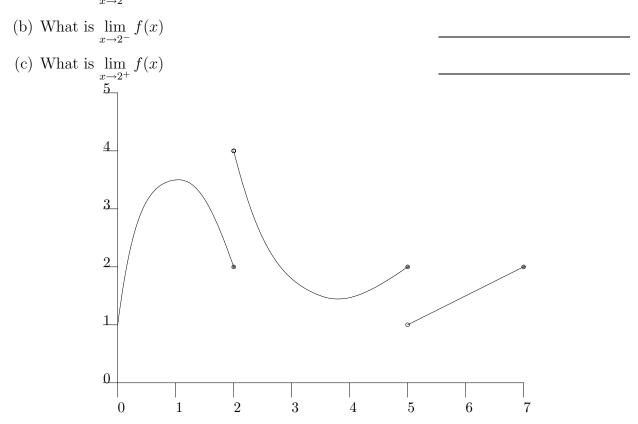
- (a) At which of the labeled points is f'(x) > 0?
- (b) At which is the labeled points is f'(x) < 0?
- (c) At which is the labeled points is f'(x) = 0?

(5) (5 points) What is the equation of the tangent line to $y = x^2 + x - 1$ at the point where x = 2?

(6) (15 points)

- (a) State what it means for a function f(x) to be continuous at the point x = a.
- (b) State the Itermediate Value Theorem.
- (c) Show that the equation $2x^3 + x 5 = 0$ has at least one solution between in the interval [1, 2].

- (7) (20 points)
 - (a) Let f be a function and a a real number $h \neq 0$. Explain the geometric meaning of the difference quotient $\frac{f(a+h) f(a)}{h}$ (include a picutre).


(b) State the definition of the derivatice f'(a) as a limit.

(c) Use your answers to (a) and (b) to explain why f'(a) is the slope of the tangent line to y = f(x) at x = a.

(d) Use the limit definition of derivative to find a formula for f'(a) when $f(x) = \sqrt{2x+1}$.

$$f'(a) = _$$

(8) (5 points) For the function y = f(x) with graph below answer the following. (a) What is $\lim_{x \to 2} f(x)$

