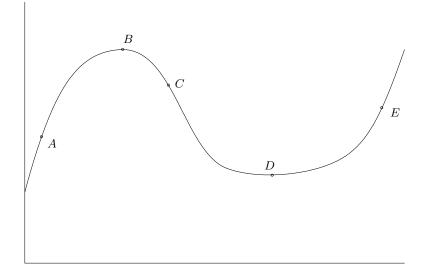



(2) (5 points) If u and v are related by  $u^2 + 4uv + 2v^2 = 10$  find  $\frac{dv}{du}$  by implicit differentiation.

$$\frac{dv}{du} =$$
\_\_\_\_\_

(3) (5 points) Find the tangent line to  $x^2y + 2xy^2 = 10$  at the point (1,2).


(4) (10 points) A 20 foot long ladder is leaning against the side of a building, but the base is slipping away from the building at 3 ft/sec. How fast is the top of the latter moving when it is 12 feet from the ground?

Rate top is moving = \_\_\_\_\_

(5) (10 points) Draw graphs of functions f(x) with the following properties.
(a) f'(x) < 0 and f''(x) > 0.

(b) f(2) = 3, f'(2) = 0, and f''(x) < 0.

(6) (10 points) In the following figure



- (a) At which of the labeled points is f' > 0?
- (b) A te which of the labeled points if  $f^\prime=0$
- (c) At which of the labeled points is f'' > 0
- (d) At which of the labeled points is  $f^{\prime\prime}<0$
- (7) (10 points) Find the maximum and minimum of  $y = 3x^2 x^3$  on the interval [0, 4].

- (8) (15 points) Sketch the graph, labeling all the local maximums, local minimums and inflection points of a function y = f(x) on [1, 4] with the following properties:
  - f' > 0 on the intervals (1, 2) and (3, 4),
  - f' < 0 on the interval (2,3),
  - f'' < 0 on (1, 2.5),
  - f'' > 0 on (2.5, 4), and
  - f(1) = 3, f(2) = 6, f(3) = 5, f(4) = 9.

(9) (10 points) The right triangle  $\triangle ABC$  has side AC of length 6 and side BC of length 3. What are the lengths of the sides of the rectangle of largest area that can be inscribed in  $\triangle ABC$  as in the figure?

