Show your work to get credit. An answer with no work will not get credit.
(1) (15 points) Compute the following limits:
(a) $\lim _{x \rightarrow 3} \frac{2 x-1}{x^{2}+4}=$
(b) $\lim _{t \rightarrow 0} \frac{\cos (2 t)}{3+\sin (t)}=$
(c) $\lim _{h \rightarrow 0} \frac{(2+h)^{2}-2^{2}}{h}=$
(d) $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=$
(e) $\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}=$
(f) $\lim _{x \rightarrow \infty} \frac{3 x^{2}+x-9}{4 x^{2}-3 x+7}=$
(g) $\lim _{x \rightarrow 0} 4 x \cot (3 x)=$
(2) (45 points) Compute the following derivatives. You do not have to simplify your answers.
(a) $y=6 x^{5}-2 x^{3}+7 x^{2}-6 x+3$

$$
y^{\prime}=
$$

(b) $y=5 x^{-3}+4 \pi^{-2}$

$$
y^{\prime}=
$$

(c) $C(q)=\frac{5}{q^{3}}-\frac{4}{q^{4}}$

$$
C^{\prime}(q)=
$$

(d) $y=\cos (x)$

$$
y^{\prime}=
$$

(e) $y=\sin (x)$

$$
y^{\prime}=
$$

(f) $y=\tan (x)$

$$
y^{\prime}=
$$

(g) $y=\sec (x)$

$$
y^{\prime}=
$$

(h) $w=3 \sqrt{z}$

$$
w^{\prime}=
$$

(i) $P(t)=3 t^{2} \sin (t)$

$$
P^{\prime}(t)=
$$

(j) $R(t)=\frac{2 t^{3}+t}{t^{2}+3 t}$

$$
R^{\prime}(t)=
$$

(k) $y=7\left(x^{4}-3 x^{2}+6\right)^{11}$

$$
y^{\prime}=
$$

(l) $y=3 \cos \left(x^{4}\right)$

$$
y^{\prime}=
$$

(m) $y=4(x+\tan (2 x))^{3}$

$$
y^{\prime}=
$$

(n) $Q(t)=\frac{1+\cos (2 t)}{1+\sin (2 t)}$ $Q^{\prime}(t)=$
(o) $y=4\left(\frac{x+2}{x+1}\right)^{5}$
$y^{\prime}=$
(p) $y=\sqrt{x^{2}+\cos ^{2}(3 x)}$

$$
y^{\prime}=
$$

(3) (10 points) Let $y=f(x)$ have the following graph.

(a) At which of the labeled points is $f^{\prime}(x)>0$?
(b) At which is the labeled points is $f^{\prime}(x)<0$?
(c) At which is the labeled points is $f^{\prime}(x)=0$?
(4) 5 points) The function $y=f(x)$ has the following graph. Estimate the derivative $f^{\prime}(3)$.

$$
f^{\prime}(3) \approx
$$

(5) (5 points) What is the equation of the tangent line to $y=x^{2}+3 x-2$ at the point where $x=-1$?
(6) (10 points)
(a) State what it means for a function $f(x)$ to be continuous on an interval I.
(b) State the Itermediate Value Theorem.
(c) Show that the equation $2 x^{3}+x-5=0$ has at least one solution between in the interval $[1,2]$.
(7) (10 points)
(a) Let f be a function and a a real number $h \neq 0$. Explain the geometric meaning of the difference quotient $\frac{f(a+h)-f(a)}{h}$ (include a picutre).
(b) State the definition of the derivatice $f^{\prime}(a)$ as a limit.
(c) Use your answers to the last two questions to explain why $f^{\prime}(a)$ is the slope of the tangent line to $y=f(x)$ at $x=a$.

