Mathematics 141 Test \#3

Name:
Show your work to get credit. An answer with no work will not get credit.
(1) (40 points) Compute the following antiderivatives.
(a) $\int\left(3 x^{4}-4 x^{3}+2 x^{2}-7 x+3\right) d x$
(b) $\int\left(t^{2}-4 \pi^{3}\right) d t$
(c) $\int\left(\frac{3}{y^{2}}+4 \sqrt{y}\right) d y$
(d) $\int \frac{x^{4}+1}{x^{2}} d x$
(e) $\int(3 \cos \theta+4 \sin \theta) d \theta$
(f) $\int x \sqrt{x^{2}+4} d x$
(g) $\int \cos (2 \theta+\pi) d \theta$
(h) $\int \sin ^{5}(t) \cos (t) d t$
(2) (15 points) Compute the following definite integrals.
(a) $\int_{0}^{2}\left(x^{2}+2 x+3\right) d x$
(b) $\int_{0}^{\pi} \sin 3 t d t$
(c) $\int_{0}^{1} \frac{x}{\left(x^{2}+1\right)^{2}} d x$
(3) (5 points) If $f^{\prime}(x)=1+2 x$ and $f(1)=4$, then what is $f(x)$?
$f(x)=$
(4) (5 points) What is the average value of $f(x)=2 x+3$ on the interval $[1,3]$?
(5) (5 points) State the mean value theorem.
(6) (10 points) Graph $y=\frac{x^{2}+1}{x}$ showing all horizonal and vertical asymptotes, critical points, local maxima and minima, and inflection points.
(7) (10 points) Use the fundemential theorem of calculus to find:
(a) $\frac{d}{d x} \int_{0}^{x} \sqrt{1+t^{3}} d t=$
(b) (10 points) $\frac{d}{d x} \int_{0}^{2 x+1} \sqrt{1+t^{3}} d t=$
(8) (10 points) Find the area between the curves $y=3 x^{2}$ and $y=x^{3}$.

Area $=$

