1. (45 points) Compute the following derivatives. You do not have to simplify your answers.

(a) \(y = 4x^5 - 9x^3 + 7x^2 - 4x + 3 \)

\[y' = \]

(b) \(y = 2x^{-5} + 3\pi^{-4} \)

\[y' = \]

(c) \(A(t) = \frac{4}{t^3} - \frac{7}{t^6} \)

\[A'(t) = \]

(d) \(y = \cos(x) \)

\[y' = \]

(e) \(y = \sin(x) \)

\[y' = \]
(f) \(y = \tan(x) \)
\[
y' = \]

(g) \(y = \sec(x) \)
\[
y' = \]

(h) \(P(t) = 3(t^2 + t + 1)(t^4 + t^2 + 3) \)
\[
P'(t) = \]

(i) \(R(t) = \frac{5t^3 + t}{4t^2 + 6} \)
\[
R'(t) = \]

(j) \(y = \cos(x^2) \)
\[
y' = \]

(k) \(y = \sin^2(2x) \)
\[
y' = \]
(l) \(y = \frac{x^2 + \tan(x)}{4 + \cos(x)} \)

\[y' = \]

(m) \(M(t) = 7(x^4 - 3x^2 + 6)^{11} \)

\[M'(t) = \]

(n) \(y = \left(\frac{x}{x+1} \right)^3 \)

\[y' = \]

(o) \(D_t \left(\frac{\sin t}{\cos 2t} \right)^3 = \)

(2) (10 points) Compute the following limits.

(a) \(\lim_{x \to 3} \frac{x^2 + 4}{x + 5} = \)

(b) \(\lim_{t \to 2} \frac{t^2 - t - 2}{t - 2} = \)
(c) \(\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = \)

(d) \(\lim_{x \to 0} \frac{\sin(3x)}{2x} = \)

(3) (5 points) What is the equation of the tangent line to \(y = 3x^2 - 4x + 1 \) at the point where \(x = -2? \)

(4) (10 points) Let \(y = f(x) \) have the following graph.

(a) At which of the labeled points is \(f'(x) > 0? \)

(b) At which of the labeled points is \(f'(x) < 0? \)

(c) At which of the labeled points is \(f'(x) = 0? \)
(5) (10 points)
(a) State what it means for a function to be continuous.
(b) State the Intermediate Value Theorem.
(c) Show that the equation \(\cos(2x) - x^2 = 0 \) has at least one solution between \(x = 0 \) and \(x = 2 \).

(6) (10 points)
(a) State the definition of derivative in terms of a limit.
(b) Use the definition of the derivative to compute \(f'(8) \) where \(f(x) = \sqrt{2x} \).
(7) (5 points) A ball rolls down a long plane so that its distance s form its starting point after t seconds is $s = 3t^2 + 2t$ feet. When is its instantaneous velocity 14 feet per second.

(8) (5 points) What is the period and amplitude of the function $f(t) = 2 - 3\cos(4t)$?

Period =

Amplitude =