Homework due Thursday October 3

1. Read and reread Section 3.3 pages 106-116.
2. Pages 105-106 Problem 9-10.
3. Below is the graph the distance D (measured in feet) of a moth from a light bulb as a function of time t (measured in seconds). Draw a graph of the rate of change $D^{\prime}(t)$ as a function of time.

Dist. 2

4. Pages 116-119 problems 2(but only use $h=.1, .01, .001), 10,11$.
5. Let $f(x)=x^{3}-2 x$ and set

$$
Q_{1}=\frac{f(a+\Delta x)-f(a)}{\Delta x}, \quad Q_{2}=\frac{f(a+\Delta x)-f(a-\Delta x)}{2 \Delta x}
$$

(a) Simplify the expression for Q_{1} enough so that all the Δx terms cancel out of the bottom of the fraction. (You may want to use the formula $(A+B)^{3}=$ $A^{3}+3 A^{2} B+A B^{2}+B^{3}$.)
(b) Simplify the expression for Q_{2} enough so that all the Δx terms cancel out of the bottom of the fraction.
(c) Draw a picture to show what Q_{1} and Q_{2} mean geometrically in terms of rates of change.
(d) If Δx is close to zero then which is small Δx or $(\Delta x)^{2}$?
(e) Which of the two estimates Q_{1} or Q_{2} gives the better estimate and why?

