Homework

Read and reread sections 3.6 and 3.7 pages 138-154 several times. The test next week will cover both of these sections.

Do problems 1, 2, 3, 4, 7, 10 on pages 145-146.
Compute the derivatives of the following functions. If it is a function of more than one variable, then find all the partial derivatives.

$$
\begin{array}{lll}
\sqrt{5+t+3 t^{2}} & t s+\sqrt{2 t+s t^{2}} & \frac{y^{3}-1}{y} \\
y=\frac{x-\sqrt{x^{2}-1}}{2} & \sqrt[3]{\frac{2}{3-2 x}} & \frac{3}{\left(2 x^{2}+5 x\right)^{\frac{3}{2}}} \\
\frac{1}{1+x^{2}} & \sqrt{x^{2}-a^{2}} \quad \text { (with } a \text { constant) } & \tan \left(x y^{2} z^{3}\right) \\
\frac{1}{r^{2}+z^{2}} & \sec \left(u^{2}+3 v\right) & 5^{\sqrt{2-x+2 y}} \\
\cos (4 w) & (s-3 t) \cot (t) & \csc (5 \theta) \\
\tan \left(\frac{y}{x}\right) & \sec \left(\frac{y}{x}\right) & \csc \left(\frac{y}{x}\right) \\
e^{\sin (2 x-y)} & \frac{1}{1-\cot \theta} & e^{\frac{-x^{2}}{2 \sqrt{t}}} \\
\tan (1+\cos (x+3 y)) & \frac{a}{a+b e^{t}} \quad \text { with } a, b \text { constants } & \sec { }^{2}(\theta)-\tan ^{2}(\theta) \\
e^{x^{2}-1} & \sin ^{3}\left(x+e^{x / 4}\right) & \frac{2}{x-3}
\end{array}
$$

