Homework Due Thursday October 5

Read reread section 3.3 pages 102-120 several times.

1. Pages $116-1202 \mathrm{ab}, 3,6,7$ (This is tricky so don't be shy about asking for help), 10ab, 11ab, 18, 19.
2. This exercise is in part a review of notation relating to functions. This will come up repeatedly in the future so is is worth getting right now. This should also throw some light on problem 3 on page 116. Let f be the function $f(t)=t^{3}$.
(a) Expand the expressions $f(a+h)$ and $f(a-h)$.
(b) Compute and simplify the expressions

$$
Q_{1}=\frac{f(a+h)-f(a-h)}{2 h} \quad \text { and } \quad Q_{2}=\frac{f(a+h)-f(a)}{h} .
$$

Both Q_{1} and Q_{2} are quotients $\frac{\Delta y}{\Delta t}$ that estimate $f^{\prime}(a)$.
(c) If $h=.1$ which is smaller h or h^{2} ? If $h=.01$ which is smaller h or h^{2} ? What is the general pattern here?
(d) How do the formulas for Q_{1} and Q_{2} together with the observations above about the size of h and h^{2} help explain why Q_{1} gives the better estimate for $f^{\prime}(a)$?

Homework Due Thursday October 5

Read reread section 3.3 pages 102-120 several times.

1. Pages $116-1202 \mathrm{ab}, 3,6,7$ (This is tricky so don't be shy about asking for help), 10ab, 11ab, 18, 19.
2. This exercise is in part a review of notation relating to functions. This will come up repeatedly in the future so is is worth getting right now. This should also throw some light on problem 3 on page 116. Let f be the function $f(t)=t^{3}$.
(a) Expand the expressions $f(a+h)$ and $f(a-h)$.
(b) Compute and simplify the expressions

$$
Q_{1}=\frac{f(a+h)-f(a-h)}{2 h} \quad \text { and } \quad Q_{2}=\frac{f(a+h)-f(a)}{h} .
$$

Both Q_{1} and Q_{2} are quotients $\frac{\Delta y}{\Delta t}$ that estimate $f^{\prime}(a)$.
(c) If $h=.1$ which is smaller h or h^{2} ? If $h=.01$ which is smaller h or h^{2} ? What is the general pattern here?
(d) How do the formulas for Q_{1} and Q_{2} together with the observations above about the size of h and h^{2} help explain why Q_{1} gives the better estimate for $f^{\prime}(a)$?

