Test 1

Name: __________________________

Show your work! Answers that do not have a justification will receive no credit.

1. (25 points) Find the derivatives of the following:
 (a) \(f(x) = 7x^3 - 9x^2 + 3x - 4 \).

\[f'(x) = \]

(b) \(V = 4s^2 - 3\sqrt{s^3} \)

\[\frac{dV}{ds} = \]

(c) \(h(t) = \sqrt{4t^2 + 1} \)

\[h'(t) = \]

(d) \(H(\theta) = \sin \theta + 2\cos \theta + 3\tan \theta \)

\[H'(\theta) = \]

(e) \(D = 2 \cdot 4^\frac{1}{2} + \frac{7}{t^5} \)

\[\frac{dD}{dt} = \]

(f) \(P(n) = P_0(1.09)^n \), (where \(P_0 \) is a constant.)

\[P'(n) = \]

(g) \(A(\alpha) = 5\cos^3(\alpha) \)

\[A'(\alpha) = \]
2. (10 points) Measurements of the temperature (in degrees F) of a cup of hot water are made every 10 seconds. Some of the measurements are given in the table. What (approximately) is the rate of the temperature when \(t = 100 \) secs?

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Temp (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>93.50</td>
</tr>
<tr>
<td>90</td>
<td>93.15</td>
</tr>
<tr>
<td>100</td>
<td>92.80</td>
</tr>
<tr>
<td>110</td>
<td>92.45</td>
</tr>
<tr>
<td>120</td>
<td>92.10</td>
</tr>
</tbody>
</table>

3. (10 points) Let \(V(s) = s^3 + s \). Write the microscope equation at the point where \(s = 2 \).

4. (15 points) Fill in the blanks.
(a) If \(f(4) = 5 \) and \(f'(4) = 6 \) a reasonable estimate of \(f(4.2) \) is ___.

(b) If \(g(5) = 6 \) and \(g'(5) = .4 \) a reasonable estimate of \(g(4.5) \) is ___.

(c) If \(h(3) = .5 \) and \(h'(3) = 2 \) a reasonable estimate of \(h(_______) \) is 0.
5. (20 points) Let \(y = f(x) \) have the graph as shown. Then answer the following.

(a) What is \(f'(1.9) \)? \\

(b) For what values of \(x \) is \(f'(x) = 0 \)? \\

(c) On what intervals is \(f'(x) \) negative? \\

(d) Draw your own axis and sketch a graph of the derivative \(y = f'(x) \).
6. (20 points) A snow ball is brought into a warm room. Let $V(t)$ be the volume of the snow ball (measured in cubic inches) after t minutes after it was brought into the room. It is known that the volume satisfies the rate equation

$$V'(t) = -\frac{1}{3} V(t)^{\frac{2}{3}}.$$

(a) Five minutes after the snow ball was brought into the room its volume is 8in3. Write the microscope equation relating ΔV and Δt at the point where $t = 5$.

(b) Using the data from part (a) estimate the volume the snowball when $t = 5.3$.

(c) Again using the data from part (a) estimate the time when the volume was 9in3.