1. Find the equation of the line through the points (4, 3), (6, -1).

The slope is:
\[m = \frac{3 - (-1)}{4 - 6} = \frac{4}{-2} = -2 \]

Equation is:
\[y - 3 = -2(x - 4) \]
\[y = -2x + 11 \]

Check:
\[y(4) = -2(4) + 11 = 3 \]
\[y(6) = -2(6) + 11 = 1 \]

Solve for \(y \):
\[y = -2(x - 4) + 3 = -2x + 11 \]

2. (a) Is the relation between \(p \) and \(q \) in the following table linear? Explain why. (This will involve both some calculations and at least one English sentence explaining why the calculations are relevant.)

<table>
<thead>
<tr>
<th>(p)</th>
<th>1.0</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q)</td>
<td>3.0</td>
<td>3.4</td>
<td>3.8</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Is in linear: \(y \neq 0 \)

Why:

\[\text{slope } a + 1 = \frac{\Delta p}{\Delta q} = \frac{1.2 - 1.0}{3.4 - 3.0} = \frac{0.2}{0.4} = \frac{1}{2} \]

\[\text{slope } a + 2 = \frac{\Delta p}{\Delta q} = \frac{1.4 - 1.2}{3.8 - 3.4} = \frac{0.2}{0.4} = \frac{1}{2} \]

\[\text{slope } a + 3 = \frac{\Delta p}{\Delta q} = \frac{1.6 - 1.4}{4.2 - 3.8} = \frac{0.2}{0.4} = \frac{1}{2} \]

The slopes are constant so it is linear.

(b) Find \(q \) as a function of \(p \).

\[\frac{\Delta q}{\Delta p} = \frac{p - 1.0}{q - 3} = \frac{1}{2} \]

Solve for \(q \):
\[q - 3 = 2(p - 1) \]
\[q = 3 + 2(p - 1) = 2p + 1 \]