Mathematics 122 Test \#2

You are to use your own calculator, no sharing.
Show your work to get credit.
A blank page is attached for scratch work.
(1) (45 points) Compute the following derivatives. Assume that a, b, and c are constants.
(a) $p=5 t^{6}-3 t^{4}+$
(b) $C=\frac{3}{\sqrt{q}}-\frac{5}{5 q^{4}}$ $\frac{d p}{d t}=$ \qquad
(c) $y=-3 e^{x}+7 \ln (x)$
$y^{\prime}=$ \qquad
(d) $R=3 b \cdot 7^{t}$
(e) $y=-5(4 x+2)^{13}$
$y^{\prime}=$ \qquad
(f) $R(x)=8 e^{3 x^{2}}$

$$
R^{\prime}(x)=
$$

\qquad
(g) $w=5 \ln \left(z^{3}+z^{2}\right)$

$$
\frac{d w}{d z}=
$$

\qquad
(h) $A(r)=4 \sqrt{e^{r}+r}$

$$
A^{\prime}(r)=
$$

\qquad
(i) $F(t)=5 e^{3 t^{4}}$

$$
F^{\prime}(t)=
$$

\qquad
(j) $y=\sqrt{x} e^{3 x^{2}}$

$$
y^{\prime}=
$$

\qquad
(k) $u=\frac{t^{2}-1}{t^{2}+1}$

$$
\frac{d u}{d t}=
$$

\qquad
(l) $H(r)=(3 r+1)\left(r^{4}+r^{2}\right)^{5}$
$H^{\prime}(r)=$ \qquad
(m) $p=2 \cos (\theta)+3 \sin (\theta)$ $\frac{d p}{d \theta}=$ \qquad
(n) $y=\cos (2 x)+\sin (3 x)$

$$
y^{\prime}=
$$

\qquad
(o) $A(r)=3 \cos ^{4}(6 r)$

$$
A^{\prime}(r)=
$$

\qquad
(2) (10 Points) Find the second derivatives of the following functions.
(a) $y=7 x^{3}+2 x^{2}-9 x+11$
$y^{\prime \prime}=$
(b) $w=3 e^{2 z}+4 \ln (z)$

$$
\frac{d^{2} w}{d z^{2}}=
$$

\qquad
\qquad
(3) (5 points) Find the tangent line to $y=3 x^{3}-5 x$ at the point where $x=2$.
(4) (15 Points) Draw graphs of functions with the following properties
(a) f is increasing at a decreasing rate.
(b) $f^{\prime}<0$ and $f^{\prime \prime}>0$.
(c) $f(3)=1, f^{\prime}(3)=0$ and $f^{\prime \prime}(x)<0$
(d) - $f(1)=-3, f(2)=1, f(4)=-2$,

- $f^{\prime}(1)=f^{\prime}(2)=f^{\prime}(4)=0$,
- $f^{\prime}(x)<0$ for $x<1$ and $2<x<4$,
- $f^{\prime}(x)>0$ for $1<x<2$ and $4<x$.
(5) (5 Points) In the figure

(a) At which of the labeled points is $f(x)>0$.
(b) At which of the labeled points is $f^{\prime}(x)>0$.
(c) At which of the labeled points is $f^{\prime \prime}(x)>0$.

(6) (7 Points) For a function given by the table	t	2.0	2.2	2.4	2.6
$A(t)$	3.7	3.4	2.9	2.0	

(a) Make a table for $A^{\prime}(t)$.
(b) Make a table for $A^{\prime \prime}(t)$.
(7) (8 Points) A roast chicken is taken out of the oven to cool. Let $T(t)$ be temperature of the chicken in degrees Fahrenheit t minutes after it was removed from the oven. Assume that $T(20)=120$ and that $T^{\prime}(20)=-3.5$
(a) Explain why $T^{\prime}(20)$ is negative.
(b) What are the units on $T(20)$?
(c) What are the units on $T^{\prime}(20)$?
(d) Estimate $T(22)$.
(e) Estimate $T(19)$.

$$
T(22) \approx
$$

\qquad
$T(19) \approx$ \qquad
(8) (10 Points) A group of students decide to sell Gamecock coffee cups. Figure 1 shows the cost $C(q)$ (in dollars) and revenue $R(q)$ (in dollars) for selling q of the head bands.

Figure 1
(a) What are the startup costs for the students?
(b) At what price are the students selling the coffee cups? \qquad
(c) Estimate the cost of producing the 125 th coffee. (That is estimate the marginal cost $C^{\prime}(125)$.

$$
C^{\prime}(125) \approx
$$

\qquad
(d) Estimate the number of coffee cups the students should sell to maximze their profit.

