(1) (15 points) The variables p and q are related is in the table | p | 1 | 3 | 5 | 7 |
| :---: | :---: | :---: | :---: | :---: |
| q | 11 | 7 | 3 | -1 |

(a) Explain why the relation between p and q could be linear.
(b) Find q as a function of p.
(c) What if the value of p when $q=8$?
(2) (10 points) Let $f(x)=x^{2}$.
(a) What is the average rate of change of $f(x)$ between $x=1$ and $x=1.1$?
(b) What is the average rate of change of $f(x)$ between $x=1$ and $x=1+h$? Simplify your answer.
(3) (10 points) Let $y=f(x)$ be given by the following graph.

(a) Estimate the average rate of change between $x=5$ and $x=20$.
(b) Estimate the instantaneous rate of change of $f(x)$ when $x=15$.

$$
f^{\prime}(15)=
$$

\qquad
(4) (10 points) Let $f(x)=x 2^{x}$
(a) Estimate the derivative of $f(x)$ when $x=3$.

$$
f^{\prime}(3)=
$$

\qquad
(b) What is the equation of the tangent line to $y=f(x)$ at point where $x=3$?
(5) (5 points) If $\$ 1000.00$ is invested at 8% interest compounded quarterly how many years does it take to become $\$ 10,000.00$?
(6) (10 points) $\$ 500.00$ is invested at 10% compounded continuously.
(a) Give a formula for the value of the principle P after t years.
(b) How long does it take the investment to double?
(7) (10 Points) Let $y=f(x)$ have the following graph.

(a) For which of the labeled points is $f^{\prime}(x)>0$?
(b) For which of the labeled points is $f^{\prime}(x)<0$?
(c) For which of the labeled points is $f^{\prime}(x)=0$?
(d) At which of the labeled points is $f^{\prime}(x)$ the largest?

(8) (10 points) The table below shows the w (in pounds) of a puppy at age t (in weeks) | t | 0 | 2 | 4 | 6 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| w | .64 | 1.74 | 2.46 | 4.58 | 6.43 |

(a) What is the average rate of change in the weight of the puppy between the 2 nd and 6 th week?
(b) Estimate the instantaneous rate of change of the weight of the puppy when it is 6 weeks old.

$$
w^{\prime}(6)=
$$

\qquad
(c) What are the units of $w^{\prime}(6)$?

(9) (15 points) Let $A(t)$ have the values | t | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $A(t)$ | 12 | 9 | 6.75 |

(a) Explain why this could come from an exponential function.
(b) Assuming $A(t)$ is exponential give a formula for $A(t)$.

$$
A(t)=
$$

\qquad
(c) What is the half life of $A(t)$?
(10) (10 points) If the graph is of $y=f(x)$, draw the graph of $y=f^{\prime}(x)$ on the same axis.

