Show your work to get credit.
(1) (10 points) For the following functions draw the graph of the derivative on the same axis. (a)

(b)

(2) (5 points) Draw a possible graph for a function given the following information.

- $f^{\prime}(x)>0$ for $1<x<4$,
- $f^{\prime}(x)<0$ for $x<1$ and $x>4$.
(3) (15 points) Let $f(x)$ have values as given in the following table.

| $x$ | 0 | 2 | 4 | 6 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 22 | 28 | 32 | 30 | 26 |

(a) Make a table of values of $f^{\prime}(x)$.
(b) Make a table of values for $f^{\prime \prime}(x)$.
(c) Give a approximation of the value of $f^{\prime}(2.8)$.

$$
f^{\prime}(2.8) \approx
$$

$\qquad$
(4) (10 points) A cold drink is left out in a warm room. Let $f(t)$ be the temperature, in degrees Celsius, of the drink $t$ minutes after being left out.
(a) Do you expect $f^{\prime}(t)$ to be positive or negative? Give a reason for you answer.
(b) What are the units of $f^{\prime}(t)$ ?
(5) (10 points) Draw graphs of functions with the following properties
(a) $f^{\prime}(x)<0, f^{\prime \prime}(x)<0$
(b) $f$ is increasing at an increasing rate.
(c) $f(1)=2, f^{\prime}(1)=0, f^{\prime \prime}(x)<0$.
(6) (10 points) Find the equation of the tangent line to $y=x-x^{3}$ at the point where $x=2$.
(7) (5 points) Let $f(x)=\frac{e^{x}}{\sqrt{x^{2}+1}}$. Then use your calculator to compute $f^{\prime}(3.1)$.

$$
f^{\prime}(3.1)=
$$

$\qquad$
(8) (10 points) For some painkillers, the size of the dose, $D$, given depends on the weight of the patient, $W$. Thus $D=f(W)$, where $D$ is in milligrams and $W$ is in pounds.
(a) Interpret $f(140)=120$ and $f^{\prime}(140)=3$ in terms of this painkiller.
(b) Use the information in part (a) to estimate $f(145)$.

$$
f(145) \approx
$$

$\qquad$
(9) (30 Points.) Find the derivatives of the following functions.
(a) $y=4 x^{3}-7 x^{2}+5 x-9$
$y^{\prime}=$
(b) $z=\frac{3}{t^{2}}+5 \sqrt{t}+e^{\pi}$

$$
z^{\prime}=
$$

(c) $A(r)=3 e^{r}+19(3.2)^{r}$

$$
f^{\prime}(t)=
$$

(d) $Q=4 \ln (P)$
$\frac{d Q}{d P}=$
(e) $V(r)=2 e^{3 r}+\left(r^{3}+r\right)^{4}$
$V^{\prime}(r)=$
(f) $y=4 \ln (2 x+1)$

$$
y^{\prime}=
$$

(g) $y=5 e^{2 x^{3}}$

$$
y^{\prime}=
$$

(h) $y=x e^{x}$

$$
y^{\prime}=
$$

(i) $w=\sqrt{z^{2}+z}-2 \ln \left(3 z^{2}+z\right)$

$$
w^{\prime}=
$$

(j) $y=\frac{x^{2}+1}{x+1}$

$$
y^{\prime}=
$$

