Mathematics 122 Final

Name:

You are to use your own calculator, no sharing. Show your work to get credit.

(1) (10 Points) Corresponding values of S and t are given by the table:

S	2	7	12	17
t	20	17	14	11

- (a) Explain why these values can come form a linear function.
- (b) Find S as a linear function of t.
- (c) What is the value of S when t = 20?
- (2) (5 points) The following table comes from an exponential function.

	t	0	1	2	3			
	P	5	10	20	40			
(a) Write P as a function of t						P(t) =		

(b) What is the value of P when t = 1.5?

(3) (10 points) The cost C of a pizza is proportional to the square of its diameter D. Assume that the cost of a 10 inch pizza is \$8.00.

(a) Give a formula for the cost of a pizza in terms of its diameter.

C =

(b) What is the cost of an 18 inch pizza?

(4) (5 points) How long does it take a dollar invested at 8% interest, compounded monthly, to double?

(5) (5 Points) Let y = f(x) have the following graph.

- (a) For which of the labeled points is f'(x) > 0?
- (b) Which of the labeled points are critical points?

- (c) For which of the labeled points if f''(x) < 0?
- (d) Which of the labeled points are local maximums?

(6) (5 points) The weight w, in pounds, of a pine tree is a function of its height h in feet. That is w = f(h). If the weight of a 50 foot is 817 pounds and f'(50) = 45 then estimate the height of a pine tree that is 52.3 feet tall.

(b) Estimate f(2.3)

 $f'(2.3) \approx$

(c) Make a table of values for f''(x).

(8) (5 points) Find the equation of the tangent line to $y = 2x - x^2$ at the point where x = 3.

(9) (5 points) For the following function draw the graph of the derivative on the same axis.

(10) (10 points) Draw graphs of functions with the following properties (a) f'(x) > 0, f''(x) < 0

(b) f is increasing at an decreasing rate.

(c)
$$f(1) = 2, f'(1) = 0, f''(x) < 0.$$

(d) •
$$f'(x) > 0$$
 for $1 < x < 4$
• $f'(x) < 0$ for $x < 1$ and for $4 < x$.

(11) (10 points) Use your calculator to sketch a graph of $y = x^3 + 3x^2 + x - 1$ and to find all the local maximizers and local minimizers of the function.

(a) Sketch of graph:

(b) Local maximizers:

(c) Local minimizers:

(12) (5 points) The energy expended by a bird per day, E, depends on the time spent forging for food per day, F hours. Foraging for a shorter time requires better territory, which then requires more energy for its defense. Find the foraging time that minimizes expenditure if

$$E = .5F + \frac{1.5}{F^2}.$$

(13) (10 points) The following is a graph of the derivative f'(x) of a function f.

- (b) What is the maximum of f(x)?
- (c) What is the maximizer of f(x))
- (14) (5 points) A water tank springs a leak. The rate R the water is coming out of the tank is given by the following table:

t (minutes after the leak starts)	0	5	10	15	20
R (gallons / minute)	32	28	25	23	19

Give upper, lower, and best guess estimates, of the total amount of oil that has leaked out in the first 15 minutes of the leak.

Upper _____

Lower

Best Guess

(15) (10 Points)

(a) Graph $y = x^2 + x$ and y = x + 1 on the same axis.

- (b) At what points do the graphs of $y = x^2 + x$ and y = x + 1 intersect?
- (c) What is the area between $y = x^2 + x$ and y = x + 1

(16) (15 points) Find the following indefinite integrals (i.e. antiderivatives). (a) $\int (5x^3 + 4x^2 + 2x - 1) dx =$

(b)
$$\int \left(\sqrt{t} + \frac{3}{t^5}\right) dt =$$

(c)
$$\int e^x dx =$$

(d)
$$\int e^{3t} dt =$$

(e)
$$\int \left(e^{\pi} + \frac{1}{x}\right) dx =$$

(17) (20 Points.) Find the derivatives of the following functions. (a) $y = 5x^3 - 6x^2 + 3x - 4$

$$y' =$$

(b)
$$w = \frac{4}{z^5} + 5\sqrt{z}$$
$$w' =$$
$$(c) f(x) = -8e^x$$
$$f'(x) =$$
$$(d) Q = 5e_{-3P}$$
$$\frac{dQ}{dP} =$$
$$(e) y = 4\ln(x^2 + x)$$
$$y' =$$
$$(f) y = x^2e^x$$
$$y' =$$
$$(g) w = 6(z^4 + z)^{20}$$
$$w' =$$
$$(h) y = \frac{e^x + 1}{e^x - 1}$$
$$y' =$$

(18) (10 points) Compute the following (a) $\int_{-1}^{2} \sqrt{e^{2x} + 3} dx =$

> (b) The derivative of $f(x) = \frac{\ln(x) + 2}{x + 1}$ at the point where x = 2.3. f'(2.3) =______

Have a nice holiday!