(1) (10 Points) Corresponding values of S and t are given by the table:

S	2	7	12	17
t	20	17	14	11

(a) Explain why these values can come form a linear function.
(b) Find S as a linear function of t.
(c) What is the value of S when $t=20$?
(2) (5 points) The following table comes from an exponential function.

t	0	1	2	3
P	5	10	20	40

(a) Write P as a function of t

$$
P(t)=
$$

\qquad
(b) What is the value of P when $t=1.5$?
(3) (10 points) The cost C of a pizza is proportional to the square of its diameter D. Assume that the cost of a 10 inch pizza is $\$ 8.00$.
(a) Give a formula for the cost of a pizza in terms of its diameter.

$$
C=
$$

\qquad
(b) What is the cost of an 18 inch pizza?
(4) (5 points) How long does it take a dollar invested at 8% interest, compounded monthly, to double?
(5) (5 Points) Let $y=f(x)$ have the following graph.

(a) For which of the labeled points is $f^{\prime}(x)>0$?
(b) Which of the labeled points are critical points?
(c) For which of the labeled points if $f^{\prime \prime}(x)<0$?
(d) Which of the labeled points are local maximums?
(6) (5 points) The weight w, in pounds, of a pine tree is a function of its height h in feet. That is $w=f(h)$. If the weight of a 50 foot is 817 pounds and $f^{\prime}(50)=45$ then estimate the height of a pine tree that is 52.3 feet tall.
(7) (10 points) Let $f(x)$ have values as given in the following table.

x	0	2	4	6	8
$f(x)$	43	39	31	27	19

(a) Make a table of values of $f^{\prime}(x)$.
(b) Estimate $f(2.3)$
$f^{\prime}(2.3) \approx$ \qquad
(c) Make a table of values for $f^{\prime \prime}(x)$.
(8) (5 points) Find the equation of the tangent line to $y=2 x-x^{2}$ at the point where $x=3$.
(9) (5 points) For the following function draw the graph of the derivative on the same axis.

(10) (10 points) Draw graphs of functions with the following properties (a) $f^{\prime}(x)>0, f^{\prime \prime}(x)<0$
(b) f is increasing at an decreasing rate.
(c) $f(1)=2, f^{\prime}(1)=0, f^{\prime \prime}(x)<0$.
(d) - $f^{\prime}(x)>0$ for $1<x<4$

- $f^{\prime}(x)<0$ for $x<1$ and for $4<x$.
(11) (10 points) Use your calculator to sketch a graph of $y=x^{3}+3 x^{2}+x-1$ and to find all the local maximizers and local minimizers of the function.
(a) Sketch of graph:
(b)

Local maximizers: \qquad
(c)

Local minimizers: \qquad
(12) (5 points) The energy expended by a bird per day, E, depends on the time spent forging for food per day, F hours. Foraging for a shorter time requires better territory, which then requires more energy for its defense. Find the foraging time that minimizes expenditure if

$$
E=.5 F+\frac{1.5}{F^{2}}
$$

(13) (10 points) The following is a graph of the derivative $f^{\prime}(x)$ of a function f.

(a) If $f(0)=5$ complete the following table

x	1	2	3	3	5	6	7	8
$f(x)$								

(b) What is the maximum of $f(x)$?
(c) What is the maximizer of $f(x)$)
(14) (5 points) A water tank springs a leak. The rate R the water is coming out of the tank is given by the following table:

$$
\begin{array}{l|ccccc}
t \text { (minutes after the leak starts) } & 0 & 5 & 10 & 15 & 20 \\
\hline R \text { (gallons / minute) } & 32 & 28 & 25 & 23 & 19
\end{array}
$$

Give upper, lower, and best guess estimates, of the total amount of oil that has leaked out in the first 15 minutes of the leak.

Upper \qquad

Lower \qquad
\qquad
(15) (10 Points)
(a) Graph $y=x^{2}+x$ and $y=x+1$ on the same axis.
(b) At what points do the graphs of $y=x^{2}+x$ and $y=x+1$ intersect?
(c) What is the area between $y=x^{2}+x$ and $y=x+1$
(16) (15 points) Find the following indefinite integrals (i.e. antiderivatives).
(a) $\int\left(5 x^{3}+4 x^{2}+2 x-1\right) d x=$
(b) $\int\left(\sqrt{t}+\frac{3}{t^{5}}\right) d t=$
(c) $\int e^{x} d x=$
(d) $\int e^{3 t} d t=$
(e) $\int\left(e^{\pi}+\frac{1}{x}\right) d x=$
(17) (20 Points.) Find the derivatives of the following functions.
(a) $y=5 x^{3}-6 x^{2}+3 x-4$

$$
y^{\prime}=
$$

(b) $w=\frac{4}{z^{5}}+5 \sqrt{z}$

$$
w^{\prime}=
$$

(c) $f(x)=-8 e^{x}$

$$
f^{\prime}(x)=
$$

(d) $Q=5 e_{-3 P}$

$$
\frac{d Q}{d P}=
$$

(e) $y=4 \ln \left(x^{2}+x\right)$

$$
y^{\prime}=
$$

(f) $y=x^{2} e^{x}$

$$
y^{\prime}=
$$

(g) $w=6\left(z^{4}+z\right)^{20}$

$$
w^{\prime}=
$$

(h) $y=\frac{e^{x}+1}{e^{x}-1}$

$$
y^{\prime}=
$$

(18) (10 points) Compute the following
(a) $\int_{-1}^{2} \sqrt{e^{2 x}+3} d x=$
(b) The derivative of $f(x)=\frac{\ln (x)+2}{x+1}$ at the point where $x=2.3$.

$$
f^{\prime}(2.3)=
$$

