Doing Calculations with Functions.

1. Let $F(u)=u^{2}+1$. Then commute $F(1+h)$.

$$
F(1+h)=
$$

\qquad
2. For the same function F compute $F(1)$.
$F(1)=$ \qquad
3. Now compute $\frac{F(1+h)-F(1)}{h}$ and simplify.

$$
\frac{F(1+h)-F(1)}{h}=
$$

\qquad
4. Now let $G(s)=2-s^{2}$ and compute $\frac{G(-1+h)-G(-1)}{h}$

$$
\frac{G(-1+h)-G(-1)}{h}=
$$

\qquad

Solving Equations by Graphing.

In the following not all the functions are given in terms of the variables x and y. However to enter them into your calculator you should use x for the independent variable and y for the dependent variable.

1. Graph the following functions on the indicated intervals. (It is up to you to figure out appropriate of Ymax and Ymin.)
(a) $y=x^{2}-3 x+7$ for $0 \leq x \leq 2$
(b) $z=\frac{r^{2}+1}{r+7}$ for $-1 \leq r \leq 3$
(c) $P=\sqrt{4-t^{2}}$ for $-2 \leq t \leq 2$
(d) $H(t)=\frac{1-2^{t}}{1+1^{t}}$ for $-1 \leq t \leq 3$.
2. By zoom in on the graph solve the following equations accurate to 2 decimal places. Your answer should be in the form of a complete sentence that allows a reader to reproduce your results. Example: Find a solution to $x^{3}+2 x-1=0$ between 0 and 1 . Solution: I zoomed in on the graph and used as the left bound $x=.4495$ and the right bound $x=.4566$ and got for the root $x \approx .4533$ (using the solve feature of the calculator). This is accurate to two decimal places.
(a) Find a solution to $x^{3}-7$ between 1 and 2 accurate two decimal places.
(b) Find a solution to $\frac{2\left(3^{r}\right)-7}{\sqrt{r^{2}+1}}$ between 0 and 2 accurate two decimal places.
(c) Find the solution to $1000(1.05)^{t}=25,000$ accurate two decimal places.
(d) Find the solution to $1+3 x^{5}=3^{-x}$ accurate two decimal places.
