Mathematics 122: Review for Test 3

The sections of the book we have covered since the last exam are all of Chapter 3 parts of Chapter 5 dealing with derivative formulas. Note however that mathematics is cumulative so that you are still expected to know the material from the earlier exams. As a first step toward studying for the test make sure you can do tall the problems on the quizzes since Test 2 (These are quizzes $20-25$. It you missed or lost one they can be found on the class homepage http://www.math.sc.edu/~howard/Classes/122b/. The exams I gave last time I taught the class can be found at http://www.math.sc.edu/~howard/Classes/122/.)

1. We informally introduced the integral as accumulated change ($\S 3.1$ of text) and saw that distance traveled is the area under the area under the velocity curve. Good practice problems are

- Pages 149-151 1, 2, 3, 7, 9; Page 193 9; Quiz 23

2. We then gave a more of less precise definition of the integral $\int_{a}^{b} f(x) d x$ valid for any function (see $\S 3.2$ of text) and learned how to compute integrals with our calculators. There will be several problems where you will have to compute integrals by use of the calculator. Good practice here is

- Pages 160-161 1-12; Quiz 21 (this includes giving upper and lower estimates for an integral) While practicing computing integrals review the definition of average value ($\S 3.4$ of text) and be sure you can compute averages. Look at
- Quiz 22; Pages 174-175 1, 2, 2, 4, 7.

3. We also gave several interpretations and applications of the definite integral. In particular know that

$$
\text { Units of } \int_{a}^{b} f(x) d x=(\text { units of } f(x)) \times(\text { units of } \mathrm{x}) .
$$

Practice here is

- Pages 183-184, 1-9 (We did these in class so the answers are in your notes.)

4. We also found that rates of change (derivatives) are related to integrals by

$$
\int_{a}^{b}(\text { rate of change }) d t=\text { total change. }
$$

That is if $F^{\prime}(t)=f(t)$ (so that $f(t)$ is the rate of change of F) then

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

This is the fundamental theorem of calculus. Look at

- Pages 191-192 1, 7.

5. There will be several problems involving the derivative rules.

- Quizzes 24 and 25; Page 248 3, 4, 11, 19; Page 291 6, 8, 11; Page 309. 1-17; and the following

6. Various and sundry surprise mystery problems.
