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Abstract

We consider the problem of maximimizing, over all choices
of n nonzero elements ay,...,a, € R™, the number of the 2"
subset sums ). ;a;, over all index sets I, belonging to some
specified target set 7. M. Miller, Roberts, and Simpson inves-
tigated the case m = 1 and T" = {0,1} of this problem, and

showed that the maximum in their case is (LE J)’ but it re-
2

mained open until now to prove the essential uniqueness of the
extremal solutions a; that achieve this maximum. More gener-
ally, we determine the maximum, as well as solutions achieving
it, over n arbitrary elements a; and target sets T" of k arbitrary
points in R™. We also obtain the same maximum number of
sums when 7T is a union of k open balls of diameter min; |a;|.
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Concentrating Subset Sums

Section 1. Introduction.

In papers that previously appeared in this Bulletin, M.
Miller, Roberts, and Simpson [13,14] determined how to max-
imize the usability of a particular statistical database. In their
model, using the control mechanism called Audit Expert, they
sought to maximize the number of Sum Queries that could
be asked without compromising any individual entry of the
database. Via some simple matrix theory, they reduced their
problem to one about the distribution of sums of a collection
of real numbers.

Specifically, they asked how to select n nonzero real num-
bers ay,...,a, so as to maximize the number of subset sums
Zi€1 a; equal to 0 or 1, where T ranges over 2[™, the collection
of all 2" subsets of [n] := {1,...,n}. They obtained the best-
possible bound for their problem, but were unable to prove
the uniqueness of their extremal families. We solve this prob-
lem here, and extend the result to the maximum number of
subset sums concentrated on a target set of k values. The so-
lution, including the description of the maximum families, is
then carried out in higher dimensions. We achieve these results
by adapting methods of extremal set theory originally devel-
oped to tackle the closely-related problem of Littlewood and
Offord [11]. For people not familiar with these methods, this
paper may serve as an introduction. Paul Erdés published his
seminal, frequently cited paper [5] on the Littlewood-Offord
problem just over 50 years ago. In honor of this occasion, and
to celebrate his remarkable contributions over the years, we
dedicate this paper to the memory of “Uncle Paul”.

After recalling the result of M. Miller et al. (Theorem 1
below), we note in Section 2 that their result is implied by
Erdo6s’ work on the Littlewood-Offord problem, and that it
can be extended to solve the problem of the maximum number
of subset sums equal to one of k fixed values. We see that
this problem is closely related to the problem of finding the
largest k-family of subsets in the Boolean lattice B,, = (2", C).
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Recall that an antichain of subsets is a collection of sets, no one
containing any other, and a k-family of subsets is a collection
with no £+1 of them on a chain. Equivalently, a k-family is the
union of k£ antichains. The maximum for both problems, the
number of subset sums and the size of a k-family, is the sum
of the k£ middle binomial coefficients in n. The same maximum
applies even if T' a union of k£ half-open intervals on the real
line, e.g., when T is an open (or half-open) interval of length
k.

The target set T' = {0,1} of M. Miller et al. is one for
which the maximum (with k& = 2) is achieved, by taking all
|a;| = 1 with the appropriate number of a; of each sign (roughly
half each way). In a subsequent paper, K. Miller and Sarvate
[12] proved that the solution above for T = {0,1} is unique,
provided that the a; are constrained to be integers. Brankovi¢
and M. Miller [2] extended the uniqueness to the original case of
real a;’s. (This paper is independent of [2], and was submitted
before [2] appeared.) The proofs in the three papers [13,12,2]
combine to yield an interesting and elegant application of the
symmetric chain decomposition of the Boolean lattice.

In Section 3, we solve the problem of determining all target
sets of k real values and all choices a; # 0 that achieve the
maximum, integer or not, by applying the description of the
maximum k-families in the Boolean lattice. We find that all a;
must be identical up to sign.

These results are extended to higher dimensions in Sec-
tion 4, where we have aq,...,a, € R™. As with the original
Littlewood-Offord problem, the k-family argument no longer
works for m > 2, and a different strategy is needed, when the
target set is a union of k£ balls. We apply Kleitman’s method
of inductive partition of 2™ into (L; J) collections, where no

two sums in the same collection are “close”. The sum of the
k middle binomial coefficients in n is still the maximum, pro-
vided that the target set is a union of k£ open balls of diameter
d = min, |a;|.

For the case that the target set 7' consists of k£ points, we
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obtain all extremal configurations—they are essentially just the
one-dimensional ones—by reducing the problem once again to
the k-family problem.

In a survey article currently in preparation, we plan to
examine the surprising series of papers by M. Miller et al. on
different models of database compromise under Audit Expert.
For example, one important model [14] leads to the condition
that the a;’s must also be distinct, which requires a dramatic
change in the methods used. We take a different, simpler, ap-
proach to understanding these problems, and we discuss their
interesting extensions to higher dimensions.

Section 2.  The Application of Erdés’ k-Family Theorem

Here is the original result of M. Miller et al. :
Theorem 1. [13] Ifay,...,a, € R\{0}, then

‘{Ig[n]:za,:o or 1}‘ < ([ILLD

iel 2

and this is best-possible.

Their bound is achieved by taking |a;| = 1, where the
number of a; = 1isn/2 or (n/2)+1, if n is even, and (n+1)/2,
if n is odd.

The papers of M. Miller et al. both nicely apply the sym-
metric chain decomposition of the Boolean lattice B,,. To ex-
tend their results (especially, to obtain the extremal families)
we instead use k-families of subsets. Indeed, Erdos’ work on
the Littlewood-Offord problem [5] immediately yields the fol-
lowing strengthening of Theorem 1, as we shall explain in this
section:

Theorem 2. Let ay,...,a, € R\{0}. Let § = min; |a;|. Let
T be a union of k half-open intervals S; of width §. Then the
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number of sums ), ;a; € T, I C [n], is at most the sum of
the k middle binomial coefficients in n.

Now in particular for £k = 2, we can shrink the k intervals
of width ¢ down to just two points, by taking 7' = {0,1}, and
we derive Theorem 1, since the two middle binomial coefficients
in n can be combined:

)+ () = (o))
(o) (o) = (o)

The Littlewood-Offord problem was posed by the number
theorists back in the 1930’s [11] in connection with their study
of the roots of random algebraic equations. It asks for the max-
imum number of the 2™ sums 22;1 €;a;, where each ¢; = 1 or
—1, that lie inside any open ball § C C of unit radius, over
all choices of S and the the numbers a; € C, subject to the
restriction that |a;| > 1. An equivalent problem is to maximize
the number of the 2™ sums ), ; a; € S, over I C [n], where §
is an open ball of unit diameter and a; € C, |a;| > 1.

Erdés [5] solved the restriction of this problem to the reals
in 1945 via Sperner’s Theorem. The similarity to our problem
is apparent, even though now we have a lower bound on |a;|.
Given any a; € R, |a;| > 1, a nice observation is that if we
replace, say, a;, by its opposite, —a;, then the full collection of
the 2" sums ), ;a;, I C [n], has the same relative location,
but is translated by —ay, since for any I C {2,3,...,n}, the

pair
Z a;, ai + Z a;
el iel
can be replaced by the pair
—ay + Z ai, Z a;.
iel iel

In particular, the maximum concentration of sums },_;a; in
any open unit interval S is the same. So it suffices to consider
just the case that all a; > 0, 7.e., a; > 1.
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The key insight is that in this case, for any open unit
interval S, the collection of index sets

{Ig[n]:ZaieS}

el

is an antichain, for if I C J C [n], then

Zai_zai: Z a; > 1,

<y) el ieJ—1

and not both ) ., a; and ), ; a; are in S. Sperner’s Theorem
[15], that (I_T_LJ) is the maximum size of any antichain A C 2[",
tells us that (LZ J) is the maximum concentration of sums in
S. In fact, this is easily achieved by taking all a; = 1 and by
centering S at [n/2].

More generally, Erdds observed that if S'is an open interval
of width k € Z*, then no k+1 index sets I such that dicr@i €
S form a chain. This is equivalent to saying that the collection
{I Cn]: > cra; € S}is ak-family (union of k antichains).
Erdoés proved
Theorem 3. [5] The maximum size of a k-family in B, =
(2", C) is the sum of the k middle binomial coefficients.

Erdos’ sharp bound is achieved by taking the family of
subsets of k middle sizes. Specifically, for n 4+ k odd, take the
consecutive sizes

n—k+1 n+k—1
2 ) . ) 2 )

and for n + k even, take the sizes

n—=k n+k ]
2 ? AR ) 2 ?
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or take the sizes

n—=k n+k
1, ... .
2 +1 2

To derive Theorem 2 from Theorem 3, we argue similarly
that we may assume all a; > 0, and we observe that the col-
lection {I C [n]: ), ;a; € T} is a union of k antichains.

Section 3. Extremal Configurations for Theorem 1.

We can now use k-families to show that the only families
achieving the maximum in Theorem 1 are those above. For
general k, the possibilities for the target set 7" and the numbers
a; are very restricted.

Theorem 4. Leta,,...,a, € R\{0}. Let T = {z1,...,z3} C
R, k < n+ 1. The number of sums ), ;a; € T is maximum,
the sum of the k middle binomial coefficients in n, if and only if
for some 6 > 0, |a;| = 6 for all i and, taking A = |[{i : a; = d}|,
T contains k middle values in the set

{(A=n)s, (A= n+1)3,..., A},

Proof. Let us first consider the case that all a; > 0. Continuing
the proof of Theorem 2, we find that

F .= {Ig[n]:ZaiET}

i€l

is a k-family of maximum size.

One can show, with standard methods in extremal set the-
ory, that a k-family G of maximum size must consist of all sub-
sets of the k£ middle sizes given explicitly in the displays at the
end of the last section. This is an instance of what has been
called the strict k-Sperner property [4, p.49]; Engel [3] gave a
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general result, which includes our case of the Boolean lattice
B,,. A simpler direct proof is to note that by the so-called LYM
inequality in B, (see such surveys as [7] or [1]), G can contain
no sets in levels strictly smaller than the £ middle levels in B,,.
In fact, G must consist of the k£ middle levels when n + k is
odd, and when n+k is even, G contains the £ — 1 middle levels
plus some elements of the two levels, one on each side of the
middle, that surround these. An argument similar to Sperner’s
original proof [15] of the case k = 1 implies that G contains all
of one and none of the other of these two surrounding levels.

For the sums Zie] a;, I € F, to generate just the k£ values
in the target set 7', it must be that all a; are identical, say all
a; =0 >0, and T contains the k£ middle multiples of § among
0,6,...,nd.

In the general case where some a; < 0, we replace such
a; by —a; and translate the target set 17" by —a;, to get an
equivalent problem. Working backwards from the case that all
a; > 0, we obtain the stated extremal families. 1

Section 4. Extensions to Higher Dimensions.

We now consider our problem in the space R™ of gen-
eral dimension m, where we take |a;| to denote the Euclidean
norm. The original Littlewood-Offord problem concerned sums
of numbers a; € C, which is equivalent to looking at it in R2.
Not until 20 years after Erdds solved the one-dimensional case,
did Katona and Kleitman (independently) [8,9] prove that in
R?, the maximum number of sums Zie ; a; inside any open

ball S of unit diameter is still just (LZ J) Extending this result

to R™ for general m, required a radically different approach:
Kleitman [10] observed that for given a;, the 2" index sets I
can be partitioned into collections with the property that no
two sets have sums which are at distance less than one. The
same idea, scaled by § = min,|a;|, allows us to extend our
Theorem 2 to higher dimensions:
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Theorem 5. Let a1,...,a, € R™\{0}. Let § = min,|a;|.
Let T' be a union of k open balls S; of diameter §. Then the
number of sums ), ;a; € T, I C [n], is at most the sum of
the k middle binomial coefficients in n.

Before presenting the proof, we describe how to obtain the
bound in Theorem 5, for the special case that the target sets
T consist of k points, by the following simple reduction to R!:
Given any problem instance, with a4,...,a, € R™\{0} and
T ={x1,...,z,} C R™, select any b € R™ such that b is not
on any of the k hyperplanes

{beR™:b-a; =0}.

Then b - a1,...,b-a, € R™\{0} and an index set I C [n]
satisfies ) ;. a; = z; only if it satisfies Y ;. b-a; = b-z; (i.e.,
we project the problem onto the line from the origin through
b). This means the sum Zielb - a; hits the target set T, :=
{b-xy1,...,b-x} consisting of k (not necessarily distinct) values
in R. By Theorem 2, the number of sums meeting 7" is at most
the sum of the £ middle binomial coefficients in n.

Pushing this method farther, we can obtain all extremal
configurations in R™ for target sets of k points. However, an
extension of our earlier k-family method is nicer. We return
to this below in Theorem 6. First, we prove Theorem 5, which
extends this bound for a target set of k points to a target set
of k (small) balls.

Proof of Theorem 5. We prove by induction on p that for
1 < p < mn, the 27 index sets I C {1,...,p} can be partitioned
into (I_gJ) collections we call here anticlusters, which are col-

lections A C 2" such that for distinct I,J € A, | > icrai —
> jesaj| > 6. Further, we require that exactly (z) — (qfl) of
these anticlusters have size p+1—2q, 0 < g < |p/2]. This dis-
tribution of sizes is in fact identical to that for the sizes of the

chains in the symmetric chain decomposition of the Boolean
lattice B,: Both distributions result from the same induction.
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We start the induction at p = 1 by simply taking the
single anticluster {@,{1}}. For general p, 1 < p < n, assume
that we have a partition of 27! into anticlusters Ay, A,, ... of
the correct sizes.

For each anticluster A;, let I; be a set in A; that max-
imizes, over all I € A;, the inner product (Zie[ ai) “Qpy1-
Geometrically, . 1, @i 1s a last point over all such sums met
by a hyperplane sweeping in direction a,41. Then the collection

;EIAIU{IlU{p—}-l}}

is also an anticluster, as } ., a; +apy1 is at distance at least
|apy1| from the sums ). _;a;, I € A;. The collection

Al ={Tu{p+1}:T€ A, I#1}

is also an anticluster, for it consists of translates by a,41 of

sums in A;. We have a partition of 2Pt into anticlusters

1, Al AL AY ... and one can check that their sizes

Al = 1Al +1, A=A -1

satisfy the size condition. We discard A} = @ if |4;| = 1. This
completes the induction.

For p = n, we get a partition into (LgJ) anticlusters A;.
Now for any anticluster A and any open ball S in R™ of di-
ameter §, at most one sum )., a;, I € A, lies inside S. Thus,
at most min{k,|A[} of the sums ), ;a;, I € A, belong to
T = Ué?:lSj. So we find that

-3

l

{IGAZ:ZaiET}

el

<> min(k, |A,]).
l

{Ig[n]:ZaiET}

el
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This sum is at most the sum of the £ middle binomial
coefficients in n, which is most easily seen by noticing that the
last sum above is the same as the sum, for a symmetric chain
decomposition {C;} of B, which is ), min(k, |C;|). This sum,
in turn, is the sum over [ of the number of subsets in C] of the
k middle sizes. 1

We can slightly extend Theorem 5 by permitting the balls
S; to include at most one point from each pair of antipodal
points on its boundary. The proof will be the same as above,
but now Theorem 2 is the one-dimensional version.

We conclude by extending Theorem 4, the description of
extremal families when 7' is a finite set, to higher dimensions.
We employ the old trick, of multiplying some a;’s by minus one,
in a novel way, in order to be able to use the existing theory
on k-families to solve this problem.

Theorem 6. Letay,...,a, € R™\{0}. LetT = {x;,..., 23} C
R™, k <n+1. The number of sums Zie[ a; € T is maximum,
the sum of the k middle binomial coefficients in n, if and only
if each a; = a; or —ay, and letting A = |{i : a; = a1 }|, the set
T contains k middle points in the sequence

{A—n)a1,(A—n+1)ay,..., a1}

Proof. We use the notation a; = (a;1,...,a;mn) to represent
the coordinates of a;. As in one dimension, we replace a; by
—a; and translate the target set T' by —a;, this time for all ¢
such that the first nonzero component a;; is negative.

So we now assume each a; has positive first nonzero com-
ponent. This property is shared by any sum of elements a;, so
that for any I C J C [n], the sum ), ; ;a; # 0. It follows
that for all 7,

D; = {Ig [n]:Zai:xj}
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is an antichain in B,,. Then

F:=JD,= {Ig[n]:ZaieT}
J i€l

is a k-family. As with Theorem 4, it follows that F' consists of
all subsets of the k£ middle sizes (there are at most two choices
for F'). One can check that each antichain D; consists of all
subsets of a certain size, and this in turn forces all a; to be
identical. The set 7" must then consist of £ middle values in
the sequence 0,a1,2a;,...,na;.

The treatment for the case of general a; now follows the
same argument as in the earlier proof of the one-dimensional
version, Theorem 4. 1
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