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Abstract

Numerical channels must be assigned to each transmitter in a large regular ar-
ray such that multiple levels of interference, which depend on the distance between
transmitters, are avoided by sufficiently separating the channels. The goal is to
find assignments that minimize the span of the labels used. Our previous paper
introduced a model for this problem using real number labellings of (possibly infi-
nite) graphs G. Given reals k1, k2, . . . , kp ≥ 0, we denote by λ(G; k1, k2, · · · , kp) the
infimum of the spans of the labellings f of the vertices v of G, such that for any two
vertices v and w, the difference in their labels is at least ki, where i is the distance
between v and w in G. When p = 2, it is enough to determine λ(G; k, 1) for reals
k ≥ 0; For G of bounded maximum degree, this will be a continuous, piecewise lin-
ear function of k. Portions of it have been obtained by other researchers for infinite
regular lattices that model large planar networks. Here we present the complete
function λ(G; k, 1) for k ≥ 1 when G is the triangular, square, or hexagonal lattice.

1 Introduction.

Efficient channel assignment algorithms in wireless networks are increasingly important.
There is usually a large network of transmitters in the plane, and a numerical channel
must be assigned to each transmitter, where channels for nearby vertices must be assigned
so as to avoid interference. The goal is to minimize the portion of the frequency spectrum
that must be allocated to the problem, so it is desired to minimize the span of a feasible
labelling.

∗Research supported in part by NSF grants DMS-0072187 and DMS-0302307. The principal results
here were announced in an extended abstract for the International Workshop on Wireless, Mobile, and
Ad Hoc Networks in the Proceedings of the 2005 IEEE International Parallel and Distributed Computing
Symposium [15]. This research was also described in part in the second author’s dissertation [21].
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Hale [19] (1980) formulated such channel assignment problems in network engineering
as graph labelling problems: Each transmitter is represented by a vertex, and any pair of
vertices that may interfere is represented by an edge in the graph. All labels are integers.

In 1988 Lanfear proposed to Roberts [29] a new 2-level channel assignment problem of
interest to NATO, in which integer labels are assigned to transmitters in the plane, with
two levels of interference, depending on the distance between transmitters, say labels differ
by at least two (respectively, one) when the transmitters are within some fixed distance
A (resp., 2A).

Griggs [18](1988) proposed studying the graph-theoretic analogue of the problem,
which he extended in the natural way, by specifying separations k1, . . . , kp for vertices
at distances 1, . . . , p: Specifically, we say a L(k1, k2, · · · , kp)-labelling of a graph G is
an assignment of nonnegative numbers f(v) to the vertices v of G, such that |f(u) −
f(v)| ≥ ki if u and v are at distance i in G. We say that labelling f belongs to the set
L(k1, k2, · · · , kp)(G). We denote by λ(G; k1, k2, · · · , kp) the minimum span over such f ,
where the span is the difference between the largest and smallest labels f(v). Griggs and
Yeh [18] concentrated on the fundamental case of L(2, 1)-labellings, and many authors
have subsequently contributed to the literature on these labellings (see [14, 16, 21]).
Increasing attention has been paid recently to more general L(k1, k2, · · · , kp)-labellings.

The frequency channel separations ki for two transmitters are often inversely propor-
tional to the distance i between them [3]. Most articles assume that the separations are
nonincreasing, k1 ≥ k2 ≥ . . . ≥ kp. But this is not required in our theory, and there
are different settings in which these labellings are a good model, but without the added
assumption on the separations ki.

Since we can use any frequencies (channels) in the available continuous frequency
spectrum, not only from a discrete set, Griggs [16] extended integer graph labellings to
allow the labels and separations ki to be nonnegative real numbers. We use the same
notation as before, L(k1, . . . , kp)(G) and λ(G; k1, . . . , kp), but now the span of a real
labelling is the difference between the supremum and the infimum of the labels used, and
λ is the infimum of the spans of such labellings.

Griggs and Jin first explored the new concept for simple graphs, such as paths and
cycles treated in [17] and then began to understand optimal labellings for the lattices
considered in this paper. Their early results led to the discovery of properties for general
graphs, which were included in the first, foundational paper [16]. The new insights and
tools developed in that project could then be applied to lattices, leading to the main
results in this paper. We expect that methods described here for lattices will have broad
applications in general, so that this paper plays an equally important role in the project
along with [16].

For graphs of bounded maximum degree, Griggs and Jin [16] proved the existence of
an optimal labelling of a nice form, in which all labels belong to the discrete set, denoted
by D(k1, k2, . . . , kp), of linear combinations

∑

i aiki, with nonnegative integer coefficients
ai. We cannot ensure the existence of finite λ(G; k1, k2, . . . , kp) for an infinite graph G
without some restriction, such as on the degrees.
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Theorem 1.1 (The D-Set Theorem [16]). Let G be a graph, possibly infinite, with finite
maximum degree. Let real numbers ki ≥ 0, i = 1, 2, . . . , p. Then there exists a finite
optimal L(k1, k2, . . . , kp)-labelling f ∗ : V (G) → [0,∞) in which the smallest label is 0
and all labels belong to the set D(k1, k2, . . . , kp). Hence, λ(G; k1, k2, . . . , kp) belongs to
D(k1, k2, . . . , kp).

Due to the D-set Theorem, previous optimal integer labelling results are compatible
with our optimal real number labelling results. Some natural properties of distance-
constrained labellings become more evident in the setting of real number labellings. In
particular, we observe the following

Proposition 1.2 (Scaling Property). For real numbers d, ki ≥ 0, i = 1, 2, . . . , p,

λ(G; d · k1, d · k2, . . . , d · kp) = d · λ(G; k1, k2, . . . , kp).

In [16, 21] we proved λ(G; k1, k2, . . . , kp) is a continuous function of the separations ki

for any graph G with finite maximum degree. Hence, results about the minimum spans
λ(G; k1, k2, . . . , kp) for ki being rational numbers can often be extended into the results
for ki being real numbers. Indeed, by Scaling, it is usually enough to obtain results for
integer ki. But the analysis is more clear, and more results emerged, by considering real
number labellings.

For any fixed p and any graph G with finite maximum degree, we conjectured [16]
that λ(G; k1, k2, . . . , kp) is a piecewise linear function of real numbers ki, where the pieces
have nonnegative integer coefficients and where there are only finitely many pieces. We
proved this if G is finite or if p = 2.

By Scaling, we have that for k2 > 0, λ(G, k1, k2) = k2λ(G; k, 1), where k = k1/k2. This
reduces the two-parameter function to a one parameter function, λ(G; k, 1), k ≥ 0. As
just discussed, we can be sure it is a continuous, nondecreasing, piecewise linear function
with finitely many pieces. Further, each piece has the form ak + b for some nonnegative
integers a, b ≥ 0.

In this paper, we will discuss the function λ(G; k, 1), k ≥ 0, for the most natural infinite
regular planar lattices (also called grids), which are the triangular (6-regular), square (4-
regular), and hexagonal (3-regular) lattices. We completely determine this optimal span
function in the range of natural application, k ≥ 1. It is solved as well for 0 ≤ k ≤ 1 for
the square and hexagonal lattice. For the triangular lattice, the problem appears to be
much tougher for 0 ≤ k ≤ 1, but we have solved portions of it and offer bounds otherwise.

The next section introduces some of the general methods used to obtain optimal
lattice labellings. It also reviews some of the known results for labelling infinite trees with
conditions at distance two, which are closely related to the lattice results.

The three following sections contain our results for the three regular lattices. The
detailed proofs, which make up most of the paper, are presented in the next three sections.
Note that for the sake of brevity, we omit the details for cases which are very similar to
ones already presented; the reader is referred to [21] for complete details in those cases.

The paper concludes with a brief section describing directions for future research.
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2 Methods

The upper bounds are generally achieved by constructing an efficient labelling, sometimes
discovered by computer search. We typically coordinatize the vertices of the lattice, give
an explicit labelling for a small piece, and repeat the pattern, tiling the whole lattice with
congruent pieces.

The lower bound proofs seem to be more difficult. There are crucial particular values
of k where we need to prove a lower bound on λ(G; k, 1). Such k are rational, say k = a/b
for some integers a, b > 0. By Scaling, it is equivalent to bound λ(G; a, b) below, which
has the advantage that we need only consider integer L(a, b)-labellings, which have integer
spans. We then seek to prove an integer bound, say λ(G; a, b) ≥ c, by contradiction: If it
is not true, then λ(G; a, b) ≤ c − 1, and there must exist a labelling f of G using labels
from the set {0, 1, . . . , c − 1}. We restrict f to an appropriate finite induced subgraph of
G, and argue that some label, call it L, must be avoided by f . We continue to eliminate
possible labels, until there remains a set of labels for which it can be shown that in fact
no feasible labelling exists. In some cases we had to write a computer program to check
all possible labellings from a specified label set of a particular induced subgraph.

A nice way to expand the set of avoided labels by using symmetry was observed by
one of the student teams we mention at the start of the next section, Broadhurst et al. [4].
A similar idea, though not formulated as explicitly, was used by another student team,
Goodwin et al. [13]. Here we state the principle in our more general setting of general
graphs and distance conditions:

Property 2.1 (The Symmetry Argument). Let S, L, and k1, k2, . . . , kp be nonnegative
integers, and let G be a graph. If every L(k1, k2, . . . , kp)(G)-labelling f into {0, . . . , S}
avoids (respectively, uses) label L, then every such labelling f avoids (respectively, uses)
label S − L.

We next describe a simple method for general graphs G that is surprisingly useful. It
permits us to extend a bound at some particular value a of k to general values of k:

Lemma 2.2. Let a, b be reals with a > 0.

If λ(G; a, 1) ≤ b, then λ(G; k, 1) ≤

{

b if 0 ≤ k ≤ a
b
a
k if k ≥ a

.

If λ(G; a, 1) ≥ b, then λ(G; k, 1) ≥

{

b
a
k if 0 ≤ k ≤ a

b if k ≥ a
.

In particular, if λ(G; a, 1) = b, then
For 0 ≤ k ≤ a, b

a
k ≤ λ(G; k, 1) ≤ b;

For k ≥ a, b ≤ λ(G; k, 1) ≤ b
a
k.

Proof: If λ(G; a, 1) ≤ b, we have:

• For 0 ≤ k ≤ a, the result follows from the fact λ(G; k, 1) is nondecreasing.

• For k ≥ a, we also use Scaling to obtain λ(G; k, 1) ≤ λ(G; k, k
a
) = k

a
λ(G; a, 1) ≤ b

a
k.
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Figure 1: The bound on λ(G; k, 1)
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Figure 2: The minimum span λ(Pn; k, 1) for path Pn, n ≥ 7.

The proof is similar, if λ(G; a, 1) ≥ b. �

It is interesting and productive to compare our lattice problems to those for infinite
trees, so let us review results for trees. For integer d > 0, let Td denote the tree that is
regular of degree d. Note that Td is infinite for d ≥ 2 and T2 is an infinite path. For the
path Pn on n vertices, n ≥ 7, we [21] have determined the minimum span λ(Pn; k, 1), n ≥ 7
(see Figure 2).

Georges and Mauro [11] obtained the values of λ(Td; k1, k2) for integers k1 ≥ k2 ≥ 0.
In a subsequent paper (with the same title!) Calamoneri, Pelc and Petreschi [7] gave the
values for integers 0 ≤ k1 ≤ k2. By continuity and scaling, these can be restated in terms
of λ(Td; k, 1) for reals k ≥ 0, which is neater, so we use this format here. As d grows, the
functions get more and more complicated for k ≥ 1, so we only state those for the values
we require here, d = 3, 4:
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Theorem 2.3 ([11]). For real k ≥ 1 we have

λ(T3; k, 1) =















3k if 1 ≤ k ≤ 3
2

k + 3 if 3
2

< k ≤ 2
2k + 1 if 2 ≤ k ≤ 3
k + 4 if k ≥ 3

Theorem 2.4 ([11]). For real k ≥ 1, we have

λ(T4; k, 1) =















































4k if 1 ≤ k ≤ 4
3

k + 4 if 4
3

< k ≤ 3
2

3k + 1 if 3
2
≤ k ≤ 5

3

6 if 5
3
≤ k ≤ 2

3k if 2 ≤ k ≤ 5
2

k + 5 if 5
2
≤ k ≤ 3

2k + 2 if 3 ≤ k ≤ 4
k + 6 if k ≥ 4

Theorem 2.5 ([7]). For real k, 0 ≤ k ≤ 1, and integer d ≥ 2, we have

λ(Td; k, 1) =







k + (d − 1) if 0 ≤ k ≤ 1
2

(2d − 1)k if 1
2

< k ≤ d
2d−1

d if d
2d−1

≤ k ≤ 1

Next we present results we need that relate the optimal spans of regular trees Td to
that of general d-regular graphs G. Since Td is the derived graph from G extending by
breadth-first-search, we define a graph homomorphism to pack Td back to G accordingly.

Theorem 2.6 ([12]). Let G be a regular graph of degree d ≥ 2. Then for all real k ≥ 1,
we have λ(G; k, 1) ≥ λ(Td; k, 1).

Proof: We define a graph homomorphism h from Td to G. Begin with any arbitrary
vertices v ∈ V (Td) and v′ ∈ V (G). Put h(v) = v′. Next, arbitrarily define h on the d
neighbors w of v to range over the d neighbors w′ of v′ in G. Continue working through
the vertices x of Td in Breadth-First-Search order: Say we have h(x) = x′, which was
defined when we considered the neighbors of some vertex y adjacent to x in Td, with h(y)
denoted already by y′. Then define h(z) for the other d − 1 neighbors z of x other than
y to range over the d − 1 neighbors z′ of x′ in G other than y′. In particular, h(z) 6= y′.
Continuing in this way we successively define h on all of Td. We see that adjacent vertices
of Td are sent to adjacent vertices of G, i.e., h is a homomorphism.

Suppose f ′ is an optimal L(k, 1)-labelling of G. We obtain a labelling f of Td by
defining, for any vertex u of Td, f(u) = f ′(h(u)). It is easy to check that f is a L(k, 1)-
labelling of Td, so that

λ(Td; k, 1) ≤ span(f) ≤ span(f ′) = λ(G; k, 1). �

The condition k ≥ 1 above is certainly necessary, since it could be for vertices s and
t at distance two that h(s) and h(t) are adjacent, and we would only be certain that
|f(s) − f(t)| ≥ k, which is not strong enough, if k < 1. For instance, let k < 1. If d = 2,
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then Td is an infinite path, and we may consider the 2-regular graph G = C3. It is easily
seen (by examining the two neighbors of a vertex with label 0) that λ(T2; k, 1) ≥ 1 + k,
which exceeds λ(C3; k, 1) = 2k.

However, if G is triangle-free, then it cannot be that h(s) and h(t) are adjacent in the
problematic case above. We find that

Theorem 2.7. Let G be a triangle-free regular graph of degree d ≥ 2. Then for all real
k ≥ 0, we have λ(G; k, 1) ≥ λ(Td; k, 1). �

3 The Triangular Lattice

In a radio mobile network, the large service areas are often covered by a network of nearly
congruent polygonal cells, with each transmitter at the center of a cell that it covers. A
honeycomb of hexagonal cells provides the most economic covering of the whole plane [10]
(i.e., covers the plane with smallest possible transmitter density), where the transmitters
are placed in the triangular lattice Γ∆ (see Figure 3). We fix a point to be the original
point o and impose an xoy coordinate system so that we can name each point by its xoy
coordinate.

xo

y

Figure 3: The Hexagonal Cell Covering and the Triangular Lattice Γ∆

This problem has some history, owing to the fundamental nature of the triangular lat-
tice for channel assignment problems. Griggs [14] formulated an integer L(k, 1)-labelling
problem on the triangular lattice Γ∆ for the 2000 International Math Contest in Modeling
(MCM). Among 271 teams which worked on this problem for four days and wrote papers,
five teams [4, 9, 13, 25, 30] won the contest and got their papers published. All winners
found λ(Γ∆; k, 1) for k = 2, 3, and some gave labellings for k = 1 or for integers k ≥ 4
that turn out to be optimal, but without proving the lower bound. Goodwin, Johnston
and Marcus [13] proved the optimality for integers k ≥ 4 (quite an achievement in such a
short time) and considered the more general problem of λ(Γ∆; k1, k2) for integers k1, k2.
Subsequently, Yeh [22] and Zhu and Shi [31] each solved some special cases for integers
k1 ≥ k2. Calamoneri [6] gave the minimum span for integers k1 ≥ 3k2, and she gave
bounds for k2 ≤ k1 ≤ 3k2, independently of us.
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Here we describe the solution of the L(k, 1)-labelling problem for the triangular lattice
for real numbers k ≥ 1, and we give bounds for 0 ≤ k ≤ 1 (see Figure 4), where
considerable effort has not yet led to a full solution. In Section 6 we describe the proof of
this result.

Theorem 3.1. For k ≥ 0 the minimum span of any L(k, 1)-labelling of the triangular
lattice is given by:

λ(Γ∆; k, 1)































































































= 2k + 3 if 0 ≤ k ≤ 1
3

∈ [2k + 3, 11k] if 1
3
≤ k ≤ 9

22

∈ [2k + 3, 9
2
] if 9

22
≤ k ≤ 3

7

∈ [9k, 9
2
] if 3

7
≤ k ≤ 1

2

∈ [9
2
, 16

3
] if 1

2
≤ k ≤ 2

3

∈ [16
3
, 23

4
] if 2

3
≤ k ≤ 3

4

∈ [23
4
, 6] if 3

4
≤ k ≤ 4

5

= 6 if 4
5
≤ k ≤ 1

= 6k if 1 ≤ k ≤ 4
3

= 8 if 4
3
≤ k ≤ 2

= 4k if 2 ≤ k ≤ 11
4

= 11 if 11
4
≤ k ≤ 3

= 3k + 2 if 3 ≤ k ≤ 4
= 2k + 6 if k ≥ 4

.

We can use Lemma 2.2 to give a slight improvement to the stated bounds in the
interval that is not yet resolved, 1/3 ≤ k ≤ 4/5: Having the exact values of lambda at
k = 2/3, 3/4, 4/5 means that there is a linear lower bound for k just below these values,
of 8k, if k ∈ [ 9

16
, 2

3
]; of 23k

3
, if k ∈ [16

23
, 3

4
]; and of 15k

2
, if k ∈ [23

30
, 4

5
]. Similarly, there is a

linear upper bound for k just above these values, of 9k, if k ∈ [ 1
2
, 16

27
]; of 8k, if k ∈ [2

3
, 23

32
];

and of 23k
3

, if k ∈ [3
4
, 18

23
].

We conjecture that the upper bound on λ(Γ∆; k, 1) is the actual value for 1
3
≤ k ≤ 1

2
.

For 1
2
≤ k ≤ 4

5
, we conjecture that λ(Γ∆; k, 1) = 5k +2, a formula which works already in

this interval at k = 1
2
, 2

3
, 3

4
and 4

5
.

Incidentally, we compared the formulas for the triangular lattice (which is 6-regular)
to that of the regular infinite tree, T6, and found they are quite different, not worth stating
explicitly here.

4 The Square Lattice

Inside cities the high buildings can be obstacles in the signal path and limit the range
of a cell. A Manhattan cellular system [3] can be used that is modeled by the square
lattice Γ� (see Figure 4). Many graphs corresponding to cellular systems are the induced
subgraphs of the square lattice and the triangular lattice.

Theorem 4.1 presents our full solution of the problem of determining λ(Γ�; k, 1) for
real numbers k ≥ 0 (see Figure 6). In Section 7 we describe the proof of this result.
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(1,6)

k

2k+6

(4,14)

(2,8)

(4/3,8)

4/31/2 54321

6k

(3/4,23/4)
(2/3,16/3)

0

2

4

6

8

10

12

16

14

(1/2,9/2)

9k

(4/5,6)

(9/22,9/2)

(1/3,11/3)
(3/7,27/7)

2k+3

(3,11)

3k+2

(11/4,11)

4k

11k

1/3

Figure 4: λ(Γ∆; k, 1) for k ≥ 0.

Previously, Calamoneri [6] independently gave the minimum (integer) span λ(Γ�; k1, k2)
for integers k1 ≥ 3k2, as well as bounds when k2 ≤ k1 ≤ 3k2. (It should be noted that
the stated bounds in the earlier extended abstract [5] are not entirely correct, such as the
claim that λ(Γ�; 3, 2) = 12, which is contradicted by the L(3, 2)-labelling of span only 11
from [20]. However, the bounds in the subsequent preprint [6] appear to be correct.)

xo

y

Figure 5: A Manhattan Fashion Network and the Square Lattice Γ�
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Theorem 4.1. For k ≥ 0 the minimum span of any L(k, 1)-labelling of the square lattice
is given by:

λ(Γ�; k, 1) =







































































k + 3 if 0 ≤ k ≤ 1
2

7k if 1
2

< k ≤ 4
7

4 if 4
7
≤ k < 1

4k if 1 ≤ k ≤ 4
3

k + 4 if 4
3

< k ≤ 3
2

3k + 1 if 3
2

< k ≤ 5
3

6 if 5
3
≤ k ≤ 2

3k if 2 < k ≤ 8
3

8 if 8
3
≤ k ≤ 3

2k + 2 if 3 ≤ k ≤ 4
k + 6 if k ≥ 4

.

3

5

7

9

1/2

8

6

4

2

k543210

1

11k/3

(5/3,6)

(4,10)

3k

(8/3,8)

(4/3,16/3) (3/2,11/2)k+4

4k

3k+1

2k+2

k+6

(4/7,4)

(3,8)

(2,6)

(1,4)

(1/2,7/2)

7k

k+3

10

Figure 6: The Minimum Span λ(Γ�; k, 1)

The full determination of λ(Γ�; k, 1) allows us now to answer a question posed by
Georges and Mauro (private communication): Does λ(Γ�; k, 1) agree with λ(T4; k, 1) for
all k ≥ 0, which we stated in Theorems 2.4 and 2.5? Since Γ� is a triangle-free regular

10



graph of degree 4, Theorem 2.7 is applicable, and tells us that λ(Γ�; k, 1) ≥ λ(T4; k, 1) for
all k ≥ 0. Indeed, they almost always agree.

However, there is one interval in which the inequality is strict: It is when 5
2

< k < 3.
In this range, λ(Γ�; k, 1) is larger, and the answer to the question is negative.

5 The Hexagonal Lattice

Another interesting fundamental planar array is the hexagonal lattice ΓH (see Figure 7),
which is the dual of the triangular lattice. We are not aware of its being used in real life
for wireless networks, but it is mentioned in the engineering literature.

We designate a point o to be the origin, and we impose a xoy coordinate system so
that we can name each point by its xoy coordinate, where (i, j) are vertices (see Figure 7).
The vertices (i, j) and (i+1, j) are adjacent. The vertices (i, j) and (i, j +1) are adjacent
if and only if i ≡ j( mod 2). Calamoneri [6] gives the minimum span for the hexagonal
lattice for integers k1 ≥ 2k2 and bounds for k2 ≤ k1 ≤ 2k2. We finish all the cases for real
numbers k ≥ 0(see Figure 5). In Section 8 we describe the proof of this result.

o

y

x

Figure 7: The Equilateral Triangle Cell Covering and the Hexagonal Lattice ΓH

Theorem 5.1. For k ≥ 0 the minimum span of any L(k, 1)-labelling of the hexagonal
lattice is given by:

λ(ΓH ; k, 1) =







































k + 2 if 0 ≤ k ≤ 1
2

5k if 1
2
≤ k ≤ 3

5

3 if 3
5
≤ k ≤ 1

3k if 1 ≤ k ≤ 5
3

5 if 5
3
≤ k ≤ 2

2k + 1 if 2 ≤ k ≤ 3
k + 4 if k ≥ 3

.

We may compare the spans of the hexagonal lattice and the regular tree of the same
degree, T3. As before, the fact that ΓH is triangle-free allows us to apply Theorem 2.7
to see that λ(ΓH ; k, 1) ≥ λ(T3; k, 1) for all k ≥ 0. Comparing the formula above for ΓH
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7

9

1/2

8

6

4

2

k543210

5
(5/3,14/3)

(1,3)
5k

k+2
(1/2,5/2)

(3/5,3)

3k
(2,5)

2k+1
(3,7)

k+4

10

1

3

Figure 8: The Minimum Span λ(ΓH ; k, 1) for k ≥ 0.

to those from Theorems 2.3 and 2.5, we see that ΓH agrees with T3 except in the range
3
2

< k < 2, where the inequality is strict, and the hexagonal lattice has larger span.

6 The Proof for the Triangular Lattice

Generally, we get upper bounds by constructing feasible labellings and lower bounds by
deriving contradictions on induced subgraphs for labellings of smaller span. Lemma 2.2 is
useful in obtaining bounds. Here we present proofs of bounds in Theorem 3.1 for various
cases.

We need some notation. Given a vertex v, let B7, (resp., B17, B37) be the induced
subgraphs of Γ∆ on all vertices which are at distance at most one (resp., two, three) from
the vertex v.

To find an upper bound on λ(Γ∆; k, 1), one construction method is to tile the whole
lattice by a labelled parallelogram described by a matrix of labels. We define a doubly
periodic labelling of the triangular lattice by an m × n labelling matrix A := [ai,j], such
that we label point (i, j) by am−(j mod m), (i mod n)+1, where i, j are integers.

For example, the following labelling (see Figure 9) is defined by the labelling matrix

12



A:

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33





Then Figure 9 shows how the labels are assigned, where a3,1 is at the vertex with
coordinates (0, 0) in the triangular lattice. The whole lattice is tiled with copies of the
3 × 3 tile as shown.

a12a11

a21 a22 a23

a13

a33a32a31

a

31 3332

232221

131211

aaa

a a a

aa

Figure 9: The Matrix Labelling

A special case of matrix labelling is defined simply by “arithmetic progressions”: For
positive integers k1, k2, we construct a labelling f ∈ L(k1, k2) by taking f(i, j) = (ai +
bj) mod l, for positive integers a, b, l, where “ mod l” is taken to be the element in the
congruence class that is in {0, . . . , l−1}. When such f is feasible, we obtain λ(Γ∆; k1, k2) ≤
l−1. Some labellings of this kind were given for the triangular and square lattices in [20].
We found some new arithmetic progression labellings by computer search. We begin our
constructions at k = 0:

Proposition 6.1. For 0 ≤ k ≤ 1
3
, we have λ(Γ∆; k, 1) ≤ 2k + 3. For 1

3
≤ k ≤ 9

22
, we

have λ(Γ∆; k, 1) ≤ 11k.

Proof: We get the upper bound λ(Γ∆; k, 1) ≤ 2k + 3 for 0 ≤ k ≤ 1
3

by defining the
labelling matrix

A =

















k + 1 2k 0 k + 3 2k + 2 2
2k + 1 1 k 2k + 3 3 k + 2

0 k + 3 2k + 2 2 k + 1 2k
k 2k + 3 3 k + 2 2k + 1 1

2k + 2 2 k + 1 2k 0 k + 3
3 k + 2 2k + 1 1 k 2k + 3

















.

In particular, λ(Γ∆; 1
3
, 1) ≤ 11

3
, and Lemma 2.2 implies that λ(Γ∆; k, 1) ≤ 11k for k ≥ 1

3
.

�

Next, we can improve upon the 11k upper bound for k between 9/22 and 1/2:
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Proposition 6.2. For 9
22

≤ k ≤ 1
2

we have λ(Γ∆; k, 1) ≤ 9
2
.

Proof: The upper bound λ(1, 2) ≤ 9 is given in [22] by an arithmetic progression labelling
in L(1, 2): Label point (i, j) by (i + 4j) mod 10. By scaling, this gives the bound on
λ(Γ∆; 1

2
, 1), which then extends to k ≤ 1

2
by Lemma 2.2. �

The upper bound for k between 1
2

and 3
4

follows from the bounds at k = 2
3

and 3
4

by
the fact that λ(Γ∆; k, 1) is nondecreasing (Lemma 2.2):

Proposition 6.3. 1. We have λ(Γ∆; 2, 3) ≤ 16. Hence, λ(Γ∆; 2
3
, 1) ≤ 16

3
.

2. We have λ(Γ∆; 3, 4) ≤ 23. Hence, λ(Γ∆; 3
4
, 1) ≤ 23

4
.

Proof: By computer search of arithmetic progression labellings, we discovered f1 ∈
L(2, 3)(Γ∆) given by f1(i, j) = (2i + 7j) mod 17 and f2 ∈ L(3, 4)(Γ∆) given by f2(i, j) =
(3i + 10j) mod 24. Hence, λ(Γ∆; 2, 3) ≤ 16 and λ(Γ∆; 3, 4) ≤ 23. �

Next we obtain the upper bound out to k = 4
3

by applying Lemma 2.2 with the upper
bound on λ(Γ∆; 1, 1). Note that the upper bounds we are giving here for k = 1

2
, 2

3
, 3

4
, and

1 are matched by the lower bounds, so give the correct values of λ(Γ∆; k, 1) for these k.

Proposition 6.4 ([4, 13]). We have λ(Γ∆; 1, 1) = 6.

Hence, λ(G; k, 1) ≤

{

6 if 3
4
≤ k ≤ 1

6k if 1 ≤ k ≤ 4
3

.

Proof: We get the upper bound, λ(B7; 1, 1) ≤ 6, from the arithmetic progression labelling
f(i, j) = (i + 3j) mod 7. The rest follows from Lemma 2.2. �

We now use the construction of numerous MCM teams at k = 2 to extend our upper
bound out to k = 11

4
:

Proposition 6.5 ( [4, 9, 13, 25, 30]). We have λ(Γ∆; 2, 1) ≤ 8.

Hence, λ(G; k, 1) ≤

{

8 if 4
3
≤ k ≤ 2

4k if 2 ≤ k ≤ 11
4

.

Proof: Label point (i, j) by (2i + 5j) mod 9. �

Next we continue out to k = 4:

Proposition 6.6. 1. For 3 ≤ k ≤ 4, we have λ(Γ∆; k, 1) ≤ 3k + 2.

2. For 11
4
≤ k ≤ 3, we have λ(G; k, 1) ≤ 11.

Proof: 1. We rewrite the proof of [13, 25]. We get the bound by defining the labelling
matrix

A =





3k 0 k 2k
1 k + 1 2k + 1 3k + 1

k + 2 2k + 2 3k + 2 2



 .

2. Using λ(Γ∆; 3, 1) ≤ 11, this extends to smaller k by Lemma 2.2. �

A construction from the winning MCM papers takes care of all large k:

Proposition 6.7. For k ≥ 4, we have λ(Γ∆; k, 1) ≤ 2k + 6.
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Proof [4, 9, 13, 25, 30]: We get the labelling from the matrix

A =





2k + 5 0 k + 4
1 k + 2 2k + 6

k + 3 2k + 4 2



 . �

We verify the lower bounds using proofs by contradiction (which can be rather com-
plicated) and Lemma 2.2. We shall postpone the small values, k ≤ 3

4
. We demonstrate

two main methods of proof. The first method, for integers k1, k2, involves the successive
elimination of possible labels, until a contradiction is reached. This method was used in
the contest paper of Goodwin et al. to handle the case of integer k ≥ 4 (see our com-
ments before Proposition 6.10). We also drew ideas from [31] for the proof of the following
important case.

Proposition 6.8. We have λ(Γ∆; 4, 3) ≥ 24.

Hence, λ(Γ∆; k, 1) =

{

6k if 3
4
≤ k ≤ 4

3

8 if 4
3
≤ k ≤ 2

Proof: The first statement implies the second by Lemma 2.2. It suffices to prove that
λ(Γ∆; 4, 3) ≥ 24. Assume to the contrary that there exists a labelling f ∈ L(4, 3)(Γ∆)
with its labels in {0, 1, . . . , 23}. The series of claims that follows restricts the labels f one
can use until we find that no such f can exist at all, proving the proposition.
Claim 1. The labelling f cannot use label 3 or 20.
Proof: Assume f uses label 3 at v. By the separation conditions, the six labels around
v belong to {7, 8, . . . , 23}, and the difference between any pair of them is at least 3.

v4

v3

v2v1

v

v5 v4

v3

v2v1

v

v5

v6

u1 u2 u3

v1 v2 u4

v6 v v3 u5

v5 v4 u6

u9 u8

u10

u11

u12

u7

Figure 10: The Subgraphs B7 and B19 of the Triangular Lattice.

Among all 49 possible labellings of B7 with central label 0 by symmetry, we found
by computer that there are just five feasible labellings of subgraph B19 that use 3 at the
center (B7, B19 are shown in Figure 10), and none of these can be extended to B37. Full
details are in [21].

By the Symmetry Argument 2.1, f is also excluded from using the complementary
label 23 − 3 = 20. �

Claim 2. The labelling f cannot use label 7 or 16.
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Proof: Assume f uses label 7 at v ∈ V (Γ∆). Denote the six labels around v by x1 <
x2 · · · < x6. By the separation conditions, xi+1 ≥ xi + 3 for i = 1, 2, . . . , 5, and each
xi ∈ {0, 1, 2, 11, 12, . . . , 19, 21, 22, 23} (recall we cannot use 3 or 20). Then, even if x1 ≤ 2,
we must have x2 ≥ 11, x3 ≥ 14, x4 ≥ 17, x5 ≥ 21, x6 ≥ 24, a contradiction. �

Now f has no label 3, 7, 16, 20. The proofs of Claim 3,4, and 5 are similar to the proof
of Claim 2, so we omit the details.
Claim 3. The labelling f cannot use label 6 or 17.
Claim 4. The labelling f cannot use label 10 or 13.
Claim 5. The labelling f cannot use label 11 or 12.

Now the set of all possible labels is {0, 1, 2, 4, 5, 8, 9, 14, 15, 18, 19, 21, 22, 23}. We can-
not find seven distinct labels, such that the difference between any two of them is at least
3. So we cannot label B7, which is a contradiction. Thus, λ(Γ∆; 4, 3) ≥ 24. �

By similar proofs, we have the following bounds. See [21] for full details.

Proposition 6.9. 1. We have λ(Γ∆; 11, 4) ≥ 44.

Hence, λ(Γ∆; k, 1) ≥

{

4k if 2 ≤ k ≤ 11
4

11 if 11
4
≤ k ≤ 3

.

2. We have λ(Γ∆; 1, 2) ≥ 9.

Hence, λ(Γ∆; k, 1) ≥

{

9k if 3
7
≤ k ≤ 1

2
9
2

if k ≥ 1
2

3. We have λ(Γ∆; 2, 3) ≥ 16. Hence, λ(Γ∆; k, 1) ≥ 16
3

for k ≥ 2
3
.

4. We have λ(Γ∆; 3, 4) ≥ 23. Hence, λ(Γ∆; x, 1) ≥ 21
4

for k ≥ 3
4
.

5. We have λ(Γ∆; 4, 5) ≥ 30. Hence, λ(Γ∆; x, 1) ≥ 6 for k ≥ 4
5
.

The next result, which takes care of all k in the interval (3, 4), can be derived by con-
tinuity and scaling from the corresponding result by Calamoneri [6] for integer labellings
that give λ(Γ∆; k1, k2) for integers k1, k2 with 3k2 ≤ k1 ≤ 4k2. Her lower bound method
involves looking at a small induced subgraph of the lattice and checking cases according to
the numerical order of the labels. This is similar to the method devised independently by
Georges and Mauro for labelling trees [11]. We discovered the result independently (but
waited on the rest of this project before writing it up here). Because our proof illustrates
a different method with some potential for future value, we include it here. It involves
the successive removal of intervals of possible labels until there is a contradiction.

We next address k ≥ 4. One of the winning teams in the modeling contest, Goodwin,
Johnston and Marcus (2000) [13], obtained the correct values for the integer cases, that
is, for integer k ≥ 4. It is a pity that, due to space limitations, the elegant proof in their
contest paper was omitted from the published version! It is the same method we used to
prove Proposition 6.8 above.

Moreover, Goodwin et al. gave what is equivalent to the correct formula, λ(Γ∆; k1, k2) =
2k1 + 6k2, for arbitrary integers k1, k2 with k1 > 6k2 + 1. By scaling and continuity, this
implies the correct formula, λ(Γ∆; k, 1) = 2k + 6, for all real k ≥ 6. There appear to be
some technical errors in their lower bound proof (quite understandable, since they had
just four days to produce their entire paper from scratch!). However, we discovered that
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if one uses the D-Set Theorem, some small changes will fix their proof. We present below
our own verification of the lower bound, which we need more generally for all real k ≥ 4.
We follow this with the much shorter proof, which is based on the method of Goodwin et
al., that only works for k ≥ 6: It will be apparent that the method does not depend on the
structure of the triangular lattice, so that it can be used on other graphs, for sufficiently
large real k, provided that there is a linear bound for all large integers k.

Proposition 6.10. For k ≥ 4 we have λ(Γ∆; k, 1) ≥ 2k + 6.

Proof: Assume for contradiction that λ(Γ∆; k, 1) = l < 2k + 6 for some k ≥ 4. By the
D-Set Theorem, there is an optimal labelling f ∈ L(k, 1)(Γ∆) with span and largest label
l and smallest label 0.
Claim 1. The labelling f cannot use labels in [3, k).
Proof: If some f(v) ∈ [3, k), then the labels on the vertices of the C6 neighboring v are
all at least f(v) + k. The largest of these labels is then at least f(v) + k + λ(C6; , k, 1) ≥
3 + k + (k + 3) = 2k + 6 > l, a contradiction (where λ(C6; , k, 1) is given in [21]).�

By symmetry, none of the labels in f belongs to (l − k, l − 3]. So all labels belong to
the union I1 ∪ I2 ∪ I3, where I1 = [0, 3), I2 = [k, l − k], and I3 = (l − 3, l].
Claim 2. The labelling f cannot use labels in [k, k + 1).
Proof: Assume some label f(v) ∈ [k, k +1). At most one of the six vertices next to v has
a label in I1 because any such label is ≤ f(v) − k < 1. At most three of the six vertices
have labels in I3 as any two must be at least one apart.

First suppose three of these labels are in I3. They cannot be at adjacent vertices, so
suppose they are at vertices v1, v3, and v5, with reference to the graph B7 in Figure 10.
Two of the other labels next to v must belong to [f(v)+k, l−k], so the larger of the two,
say it is at v2, must be at least f(v) + k + 1 ≥ 2k + 1. Then both f(v1) and f(v3) are at
least f(v2) + k, and the larger of the two is at least f(v2) + k + 1 ≥ 3k + 2 ≥ 2k + 6 > l,
a contradiction.

Next suppose just two of these labels next to v lie in I3. The two vertices are not
adjacent. There must be at least three labels next to v in [f(v) + k, l − k], and, because
this interval has length < k, no two of the three are adjacent–say they are at v1, v3, v5.
The largest of the three labels is at least f(v) + k + 2, and its neighbor with label in I3

has label at least f(v) + k + 2 + k ≥ 3k + 2, which is again a contradiction.
Finally, suppose at most one label next to v lies in I3. Then at least four labels next

to v are in [f(v) + k, l − k], so some two are adjacent–but this is impossible since they
must differ by at least k (as (l − k) − (f(v) + k) ≤ l − 3k < 2 < k). �

Hence, f has no labels in [k, k + 1) nor, by symmetry, in (l− k − 1, l− k]. So all of its
labels belong to I1 ∪ I ′

2 ∪ I3, where here I ′

2 = [k + 1, l − k − 1].
Claim 3. The labelling f cannot use labels in [k + 1, k + 2).
Proof: Suppose some f(v) ∈ [k + 1, k + 2). Then labels used next to v in I1 are at most
f(v) − k < 2, so there can be at most two such labels. On the other hand, at most three
labels next to v can come from I3. Then some label used next to v lies in I ′

2. But such
a label must be at most l − k − 1 and at least f(v) + k ≥ 2k + 1 ≥ k + 5 > l − k − 1, a
contradiction. �
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By symmetry, no label of f belongs to (l − k − 2, l − k − 1]. Then all of its labels
belong to I1 ∪ I ′′

2 ∪ I3, where I ′′

2 = [k + 2, l − k − 2]. Let u be a vertex with f(u) = 0.
Then its six neighbors all have labels in I ′′

2 ∪ I3. But I3 can contain at most three of the
labels, as they must be at least one apart from each other. So some three of the labels
are in I ′′

2 . However, (l − k − 2)− (k + 2) = l − 2k − 4 < 2, so I ′′

2 can contain at most two
of the labels, a contradiction, and no such f exists. �

Here is the shorter proof of the restriction of the Proposition above to k ≥ 6.

Proposition 6.11. For k ≥ 6 we have λ(Γ∆; k, 1) ≥ 2k + 6.

Proof: Let us assume the result of Goodwin et al. that λ(Γ∆; k, 1) ≥ 2k + 6 for integers
k ≥ 4. Now consider any non-integer k > 6. Let m = dke − k, so that m ∈ (0, 1) and
k + m = dke ≥ 7. Hence, λ(Γ∆; k + m, 1) ≥ 2k + 2m + 6.

Assume for contradiction that λ(Γ∆; k, 1) < 2k + 6. Let f be an optimal labelling
in L(k, 1)(Γ∆) as in the D-Set Theorem, with minimum value 0 at some vertex u and
maximum value span(f) at some vertex w. Define a labelling f1 by f1(v) = f(v) +
m bf(v)/kc. We can check that f1 ∈ L(k + m, 1)(Γ∆). Further, the minimum value of
f1 is 0, which occurs at u, and its maximum occurs at v, which thus has value f1(v) =
span(f1) < (2k + 6) + m b(2k + 6)/kc = 2k + 6 + 2m (since k > 6 by assumption). This
contradicts the lower bound in the previous paragraph. �

We cannot see how to extend the argument in the last proof to work for k between 4
and 6.

It remains to do the lower bound for 3 < k < 4 and small k. Similar to the proof of
Proposition 6.10, we can show (see [21]):

Proposition 6.12. For 3 < k < 4, we have λ(Γ∆; k, 1) = 3k + 2.

Proposition 6.13. For 0 < k ≤ 1
2
, we have λ(Γ∆; k, 1) ≥ 2k + 3. Hence λ(Γ∆; k, 1) =

2k + 3 for 0 ≤ k ≤ 3
7
.�

This completes the proof of Theorem 3.1.

7 The Proof for the Square Lattice.

We begin by establishing the claimed upper bounds on λ(Γ�; k, 1) for reals k ≥ 0.
In many cases, we provide an explicit construction based on a modular construction,

in which a particular matrix of labels is used for a rectangle of lattice points and then
repeated over and over. This is described most conveniently by thinking of a m × n
matrix A as having entries ax,y, and the lattice point with coordinates (i, j) receives label
aj mod n +1, i mod m +1.

Proposition 7.1. For 0 ≤ k ≤ 1
2
, we have λ(Γ�; k, 1) ≤ k + 3.

Proof: Starting from an optimal L(0, 1)-labelling and shifting up some labels by k, in
order to satisfy the L(k, 1) conditions, we came up with the following labelling matrix
that attains the upper bound:

18



A =









0 k 1 k + 1
k + 3 2 k + 2 3

1 k + 1 0 k
k + 2 3 k + 3 2









. �

Next, applying the result above at k = 1/2, Lemma 2.2 yields this upper bound for
larger k:

Proposition 7.2. For 1
2
≤ k ≤ 4

7
, we have λ(Γ�; k, 1) ≤ 7k. �

We can use arithmetic progression labellings, analogous to those for the triangular
lattice in the previous section. Van den Heuvel, Leese and Shepherd [20] give a circular
integer labelling result which is helpful for our real number labellings, as it suggests some
arithmetic progression labellings that turn out to be optimal for our problem:

Proposition 7.3. We have
λ(Γ�; 1, 1) = 4,
λ(Γ�; 2, 1) ≤ 6,
λ(Γ�; 3, 1) ≤ 8, and
λ(Γ�; 3, 2) ≤ 11.

Proof: From [20], we have these labellings:
λ(Γ�; 1, 1) ≤ 4 by labelling f with f(i, j) = (i + 2j) mod 5
λ(Γ�; 2, 1) ≤ 6 by labelling f with f(i, j) = (2i + 3j) mod 7
λ(Γ�; 3, 1) ≤ 8 by labelling f with f(i, j) = (3i + 4j) mod 9
λ(Γ�; 3, 2) ≤ 11 by labelling f with f(i, j) = (3i + 5j) mod 12.
It is easy to show λ(Γ�; 1, 1) ≥ 4. �

Applying the preceding two propositions and Lemma 2.2, we have the following upper
bounds.

Proposition 7.4. We have λ(Γ�; k, 1) ≤























4 if 4
7
≤ k ≤ 1

4k if 1 ≤ k ≤ 5
3

6 if 5
3
≤ k ≤ 2

3k if 2 ≤ k ≤ 8
3

8 if 8
3
≤ k ≤ 3

. �

The upper bounds in the proposition above are weaker than what we want for 4
3

<
k < 5

3
. Let us consider one value in this gap, k = 11/8.

By Proposition 7.4, we get the upper bound λ(Γ�; 11
8
, 1) ≤ 11

2
, so by scaling, λ(Γ�; 11, 8) ≤

44. To determine whether this is best-possible, we searched for a better labelling: We
managed to construct a L(11, 8)-labelling based on a matrix A in which the entries are
elements of the D-set in [0, 43]. Since 43 can be expressed in terms of 11 and 8 in just
one way, 43 = 11 + 4 × 8, we easily saw how to extend this matrix labelling to cases in
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the range 4
3
≤ k ≤ 3

2
, as given in the following proposition. We next took the resulting

labelling at k = 3
2
, and found a way to extend it to the range 3

2
≤ k ≤ 5

3
in a way that

maintains the order of the labels, while expanding their pairwise differences, to main-
tain feasibility as k grows. This gives Proposition 7.6. Notice that these formulas for
λ(Γ�; k, 1) around k = 11/8 are not of the simple form ck for some c, so we could not
simply apply Lemma 2.2.

Proposition 7.5. For 4
3
≤ k ≤ 3

2
, we have λ(Γ�; k, 1) ≤ k + 4.

Proof: The upper bound is attained by the following labelling matrix:









5 k 4 0 3 k+4 2 k+3 1 k+2 0 k+1
0 3 k+4 2 k+3 1 k+2 0 k+1 5 k 4
2 k+3 1 k+2 0 k+1 5 k 4 0 3 k+4

k+2 0 k+1 5 k 4 0 3 k+4 2 k+3 1









. �

Proposition 7.6. For 3
2
≤ k ≤ 5

3
, we have λ(Γ�; k, 1) ≤ 3k + 1.

Proof: The upper bound is attained by the following labelling matrix:









2k + 2 k 2k + 1 0 2k 3k + 1 2 3k 1 k + 2 0 k + 1
0 2k 3k + 1 2 3k 1 k + 2 0 k + 1 2k + 2 k 2k + 1
2 3k 1 k + 2 0 k + 1 2k + 2 k 2k + 1 0 2k 3k + 1

k + 2 0 k + 1 2k + 2 k 2k + 1 0 2k 3k + 1 2 3k 1









. �

For larger k, we first adapt the construction given by Calamoneri for integers k1, k2

with 3k2 ≤ k1 ≤ 4k2. We then present a simple matrix L(k, 1)-labelling that turns out to
be optimal for all k ≥ 4.

Proposition 7.7. For 3 ≤ k ≤ 4 we have λ(Γ�; k, 1) ≤ 2k + 2.

Proof: Adapting the construction in [6], the upper bound is attained by a L(k, 1)-labelling
matrix:

A =





2k + 2 k 2k + 1 2 2k 1 k + 2 0 k + 1
k + 2 0 k + 1 2k + 2 k 2k + 1 2 2k 1

2 2k 1 k + 2 0 k + 1 2k + 2 k 2k + 1



 . �

Proposition 7.8. For k ≥ 0 we have λ(Γ�; k, 1) ≤ k + 6.

Proof: The upper bound is attained by the following labelling matrix:

A =









0 k + 3 1 k + 4
k + 6 2 k + 5 3

1 k + 4 0 k + 3
k + 5 3 k + 6 2









. �
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We now work on the lower bounds to complete the proof of the formulas. It is helpful
to compare our graph to the regular infinite tree T4 of degree 4, discussed in the section
on methods. By Theorem 2.7 we get that for all k ≥ 0, λ(Γ�; k, 1) ≥ λ(T4; k, 1). From the
values of λ(T4; k, 1) presented in Theorems 2.4 and 2.5, we obtain the claimed values of
λ(Γ�; k, 1) for all k outside the interval [ 5

2
, 3]. In this remaining interval, we must improve

the lower bound on λ(Γ�; k, 1). In view of Lemma 2.2, all that remains to prove the
theorem is to establish the lower bound at k = 8/3:

Proposition 7.9. We have λ(Γ�; 8, 3) ≥ 24. Consequently, for 2 ≤ k ≤ 3, we have

λ(Γ�; k, 1) ≥

{

3k if 2 ≤ k ≤ 8
3

8 if 8
3
≤ k ≤ 3

.

v7

v0 v5

v11v10v9

v6

v4

v1 v3

v8

v2

Figure 11: The Subgraph B12 of the Square Lattice

Proof: The second statement follows from the first by Lemma 2.2.
Assume for contradiction that the first statement fails. Then there exists a labelling

f ∈ L(8, 3)(Γ�) with all labels in {0, . . . , 23}. The series of claims that follows restricts the
labels f one can use until we find that no such f can exist at all, proving the proposition.

Let v0 = (i0, j0) ∈ V (Γ�). Let B12 be the induced subgraph as in Figure 11.
Claim 1. The labelling f cannot use label 7 or 16.
Proof: Assume f(v0) = 16. Since no label can exceed 23, the four distinct labels around
v0 are each ≤ f(v0) − 8 = 8, which is impossible since any two must be at least 3 apart.

By the Symmetry Argument 2.1, labelling f is also excluded from using the comple-
mentary label 23 − 16 = 7. �

Claim 2. The labelling f cannot use label 8 or 15.
Proof: Assume some f(v0) = 8. The four labels around v0 are each ≥ f(v0) + 8 = 16 or
≤ f(v0) − 8 = 0, hence are 0 or ≥ 17 (because by Claim 1, f cannot use 16). Suppose
they are labels x < y < z < w. Since the difference between any pair of the four labels
is ≥ 3, it must be that x = 0, y = 17, z = 20, w = 23. Suppose without loss of generality
that f(v7) = y = 17. Since f(v7) + 8 = 25 is too large, it must be that the neighboring
labels f(v6), f(v8), f(v10) are all ≤ f(v7)− 8 = 9, and hence, all ≤ f(v0)− 3 = 8− 3 = 5.
But this is impossible since the difference between any pair of the three labels must be at
least 3. By symmetry, we must also exclude 15. �

Now f has no label 7, 8, 15, 16. The proofs of Claim 3 and 4 are similar to the proof
of Claim 2, so we omit the details.
Claim 3. The labelling f cannot use label 9 or 14.
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Claim 4. The labelling f cannot use label 11 or 12.
By the D-Set Theorem, there exists optimal labelling f ∗ ∈ L(8, 3)(Γ�) with smallest

label 0 and all labels in D8,3∩[0, 23] = {0, 3, 6, 8, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}.
Applying the Claims above to f ∗, we find that f ∗(v) ∈ {0, 3, 6, 17, 18, 19, 20, 21, 22, 23}
for all v ∈ V (Γ�).

Let f(v0) = 0. The four labels around v0 are each ≥ f(v0) + 8 = 8. Their labels
belong to {17, 18, 19, 20, 21, 22, 23}, a contradiction since the difference between any pair
of them is ≥ 3. Thus, it must be that λ(Γ�; 8, 3) ≥ 24. �

We have now completed the proof of the formulas for the square lattice, Theorem 4.1.

8 The Proof for the Hexagonal Lattice

We will find the upper bound on λ(ΓH ; k, 1), k ≥ 0, by constructions and Lemma 2.2.
One construction method is to tile the whole lattice by a labelled parallelogram described
by a matrix of labels. We define a doubly periodic labelling of the Hexagonal Lattice by
an m × n labelling matrix A := [ai,j], for m, n even, such that we label point (i, j) by
a(n−j) mod n +1, i mod m +1, where i, j are even.

For example, the following labelling (see Figure 12) is defined by the labelling matrix
A, where

A =









a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46









Then Figure 12 shows how the labels are assigned, where a4,1 is at the vertex with
coordinates (0, 0) in the hexagonal lattice. The whole lattice is tiled with copies of the
4 × 6 tile as shown:
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a3635a

a 42

a 24

aa 11

a21

a 31

a41

a12

a

a32

a13

a 23

a 33

a43

Figure 12: The Doubly Periodic Labelling by Matrix A

Proposition 8.1. For 0 ≤ k ≤ 1
2
, we have λ(ΓH ; k, 1) ≤ k + 2.
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Proof: We use the labelling matrix below, also shown in Figure 13, with the values a, b, c
taken to be k, k + 1, k + 2, respectively:

A =

[

0 a 1 b 2 c
b 2 c 0 a 1

]

Incidentally, this labelling was obtained by doing a first-fit labelling on one row, then
on the next row, and so on. �
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Figure 13: Optimal L(k, 1)-labelling of ΓH for 0 ≤ k ≤ 1
2

or k ≥ 3.

We have λ(ΓH ; 1
2
, 1) ≤ 5

2
. By Lemma 2.2, it follows that:

Proposition 8.2. For 1
2
≤ k ≤ 3

5
, we have λ(ΓH ; k, 1) ≤ 5k. �

Next we consider k = 1:

Proposition 8.3. We have λ(ΓH ; 1, 1) ≤ 3. Hence, λ(ΓH ; k, 1) ≤

{

3 if 3
5
≤ k ≤ 1

3k if 1 ≤ k ≤ 5
3

Proof: Because of Lemma 2.2, it is enough to prove the upper bound at k = 1.
We will prove λ(ΓH ; 1, 1) ≤ 3 by using either of the following labelling matrices. Each

was obtained by a first-fit labelling process, doing one row at a time. (See Figure 14.)

A =









0 2 1 3
1 2 0 3
1 3 0 2
0 3 1 2









or A =

[

0 2 1 3
1 3 0 2

]

�

Proposition 8.4. For 2 ≤ k ≤ 3, we have λ(ΓH ; k, 1) ≤ 2k + 1. For 5
3
≤ k ≤ 2, we have

λ(ΓH ; k, 1) ≤ 5.

Proof: The second statement follows immediately from the first at k = 2. For 2 ≤ k ≤ 3,
one can prove λ(ΓH ; k, 1) ≤ 2k+1 by the matrix labelling with entries shown in Figure 15
(left). A simpler construction can be obtained by adapting a construction of Calamoneri
[6], originally given for the corresponding integer labelling. We take the following matrix
labelling, shown in Figure 15 (right):
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Figure 14: Optimal L(1, 1)-labelling of ΓH
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Figure 15: Optimal L(k, 1)-labellings of ΓH for 2 ≤ k ≤ 3.

A =

[

1 k + 1 2k + 1 1 k + 1 2k + 1
2k 0 k 2k 0 k

]

. �

Next we treat large k:

Proposition 8.5. For k ≥ 3, we have λ(ΓH ; k, 1) ≤ k + 4.

Proof: Following the construction in [6] for the corresponding integer labelling, we again
have the matrix labelling as in Figure 13, where this time a = k + 4, b = k + 3, c = k + 2:

A =

[

0 a 1 b 2 c
b 2 c 0 a 1

]

. �

We next verify the lower bounds. By Theorem 2.7 we get that for all k ≥ 0,
λ(Γ�; k, 1) ≥ λ(T3; k, 1). From the values of λ(T3; k, 1) presented in Theorems 2.3 and 2.5,
we obtain the claimed values of λ(Γ�; k, 1) for all k outside the interval ( 3

2
, 2). In this re-

maining interval, we must improve the lower bound on λ(Γ�; k, 1). In view of Lemma 2.2,
all we need to do to complete the proof is to establish the lower bound at k = 5/3:
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Proposition 8.6. We have λ(ΓH ; 5, 3) ≥ 15. Hence, λ(ΓH ; k, 1) ≤

{

3k if 1 ≤ k ≤ 5
3

5 if 5
3
≤ k ≤ 2

Proof: It suffices to prove the first statement, due to Lemma 2.2. We will show
λ(ΓH ; 5, 3) ≥ 15.

Assume otherwise, λ(ΓH ; 5, 3) < 15. Then there exists a L(5, 3)-labelling f with all
labels in the set {0, . . . , 14}.
Claim 1. The labelling f cannot use label 4 or 10.
Proof: Assume f(v) = 4 for some v ∈ V (ΓH). The three distinct labels around v are
≥ f(v) + 5 = 9. Suppose they are labels x1 < x2 < x3. Since any pair of the three labels
differ by at least 3 (because they are at distance two each other), one of them is ≥ 15, a
contradiction. By the Symmetry Argument, f cannot use label 14 − 4 = 10. �

Claim 2. The labelling f cannot use label 5 or 9.
Proof: Assume f(v) = 5 for some v ∈ V (ΓH). The three labels around v are ≤ f(v)−5 =
0 or ≥ f(v) + 5 = 10. But 10 is excluded by the previous Claim. Since any pair of the
three labels differ by at least 3 it must be that the three labels used are 0, 11, 14. Then
the three neighbors of the label 11 are each ≤ 11−5 = 6 and any two are at least 3 apart,
so they need to be 0, 3, and 6. But this is a contradiction since one of them is f(v) = 5.
By symmetry, we must also exclude label 9. �

Now f has no label 4, 5, 9, 10. The proofs of Claim 3 and 4 are similar to the proof of
Claim 2, so we omit the details.
Claim 3. The labelling f cannot use label 7.
Claim 4. The labelling f cannot use labels 1, 2, 12, or13.

Now all labels of f belong to {0, 3, 6, 8, 11, 14}, call this set L.
Claim 5. The labelling f cannot use label 3 or 11.
Proof: Assume f(v) = 3 for some v ∈ V (ΓH). The three labels around v are ≥ f(v)+5 =
3 + 5 = 8. They are 8, 11, 14 as in Figure 16.

The three neighbors of the label 11 are ≤ 6, with one of them f(v) = 3 and the others
are 0, 6. By the separation conditions and set L, we have c, d ∈ {0, 14}. We have two
cases.

Case 1. a = 0, b = 6.
Since a = 0, then c = 14. We cannot find a feasible label g in L, a contradiction.
Case 2. a = 6, b = 0.
Since b = 0, then e ∈ {6, 8}, f = 0, so that d = 14. We cannot find a feasible label h

in L, a contradiction. �

Now all labels of f belong to {0, 6, 8, 14}. We cannot label the induced subgraph K1,3,
a contradiction. �

This completes the proof of the span formulas for ΓH .

9 Further Research

We continue to ponder the general properties of λ numbers of graphs. As noted early on
in the paper, we have shown in another paper for general graphs G of bounded maximum
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Figure 16: The L(5, 3)-labelling of a Subgraph of ΓH

degree that λ(k, 1)(G) is piecewise linear as a function of k ≥ 0 with only finitely many
pieces. The graphs for G being one of the three regular lattices, described in this paper,
show that the function, though nondecreasing and continuous, is not in general either
concave up or concave down.

Having determined the lambda numbers of the three lattices with conditions at dis-
tance two (almost!), it is natural to extend the investigation to conditions at distance
three. This more general question is almost wide open.

There are several papers in engineering with research on the case that k1 = k ≥
k2 = k3 = · · · = kp = 1. Van den Heuvel, Leese, and Shepherd [20] show a result
which is equivalent to λ(Pn; 2, 1, 1) = 4, for a path Pn, n ≥ 2. Bertossi, Pinotti, Tan [3]
give values and labellings for the triangular lattice Γ4 (which is the 6-regular, infinite
planar lattice): λ(Γ4; 1, 1, 1) and λ(Γ4; 2, 1, 1). Bertossi et al. [3] and then Panda et
al. [26] present a lower bound for the square lattice Γ� (the 4-regular planar lattice)

independently, λ(Γ�; 1, 1, . . . , 1) ≥ bp2+2p

2
c, where p is as above and hence p + 1 is the

channel reuse distance.
Concerning graph models of wireless networks, Dubhashi et al. [8] present bounds on

the minimum span for L(2, 1, 1, · · · , 1)-labelling of the d-dimensional square lattice (grid),
in which V (G) = Z

p, and two vertices, say (x1, x2, . . . , xp) and (y1, y2, . . . , yp), are joined
by an edge whenever

∑p

i=1 |xi − yi| = 1. The motivation is that when the networks of
several service providers overlap geographically, they must use different channels for their
clients. The overall network can be modeled in a higher dimensional lattice.

We are continuing this project by seeking to describe all optimal L(k, 1)-labellings
of the three regular lattices, and by searching for optimal labellings with nice symmetry
properties, such as being periodic or doubly periodic.

We expect that by extending these problems of optimal integer graph labelling to
more general real number labellings, our developing theory will give more insight into the
original problems.
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