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Abstract

We discuss applications of combinatorial arguments to database security: maximizing
the “usability” of a statistical database under the control of the mechanism Audit Ex-
pert of Chin and Ozsoyoglu. As modelled by Mirka Miller et al., the goal is to maximize
the number of SUM queries from a database of real numbers without compromising
it. Via linear algebra, direct connections emerge between such database query mod-
els and problems that concern maximimizing, over all choices of n nonzero elements
a1, . . . , an in Rm, the number of the 2n subset sums

∑
i∈I ai, over all index sets I,

belonging to some specified target set T . Well-known problems of this kind that arise,
including the Littlewood-Offord and Erdős-Moser problems in number theory, have
been successfully attacked using results and methods for partially ordered sets. We
survey these connections and their extensions to higher dimensions. Fascinating new
challenges have emerged with two new models of compromise that we introduce here.
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Section 1. Introduction

A series of papers by Mirka Miller and a changing cast of co-authors describes a
remarkable connection between maximizing the usability of a certain database mech-
anism and fundamental problems about concentrating subset sums for collections of
numbers or vectors. The two principal models of database compromise in past studies
are solved by surprising applications of the combinatorial theory of finite posets.

In this survey we offer streamlined proofs that simplify earlier approaches while
giving more insight into the original database security problems. We also describe
natural extensions of the associated subset sum problems, which are interesting for
their own sake, to higher dimensions or to more general target sets. We introduce two
new models of database compromise that lead to new subset sum problems meriting
future study.

The origin of the topic is the analysis of the statistical database control mechanism
called the AUDIT EXPERT devised by Chin and Ozsoyoglu [6]. Using it, one can ask
for numerical information from a database by making a series of queries. An example
that is particularly helpful is to imagine a mathematics department with n members
such that for each member is recorded the name, date of birth, sex, rank, salary, and
so on. Let us suppose that the salaries are confidential, but that one may ask for
information about the salaries of selected groups of people, such as the maximum or
average salary for an identifiable subgroup within the department. For instance, we
can determine which people are over 60 years old and ask for the maximum salary of
any of these people. The papers of M. Miller et al. present a more detailed example
of this sort. What leads to particularly nice problems is to restrict attention to the
case that the user can only ask SUM queries, in which the sum of the salaries of the
specified people is returned.

We imagine then a database with n confidential records, which are real numbers
x1, . . . , xn. Let [n] := {1, . . . , n} and 2[n] := {I ⊆ [n]}. The user may specify any
subset J of the index set [n] and request the subset sum

∑
j∈J xj . AUDIT EXPERT

will keep track of which queries it has previously answered and decline to answer the
next query if it would, together with the previous answers, lead to a compromise of the
database. We shall consider several models of “compromise”. Using only SUM queries,
our analysis will not depend in any way on the actual values of the xj ’s.

We generally consider AUDIT EXPERT running in the static mode in which it
is decided in advance of the session which queries are answerable. In order to be as
informative as possible, the goal is to maximize the number of answerable queries. That
is, we seek families of subsets S ⊆ 2[n] such that answering all queries

∑
j∈J xj , J ∈ S

does not compromise the database, with |S| as large as possible.

The most-studied model of compromise is this: We say that the database is abso-
lutely compromised if some xi can be determined. Of course, xi need not be revealed
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directly. For instance, S is absolutely compromised if {1, 2}, {1, 3}, {2, 3} ∈ S since

x3 =
1

2
(x1 + x3) +

1

2
(x2 + x3)− 1

2
(x1 + x2).

Let Bn denote the Boolean lattice, which is the poset consisting of all 2n subsets of
the set [n] ordered by inclusion. Miller, Roberts, and Simpson [23] converted the maxi-
mum usability problem here to a matrix problem, which in turn exposed a subset sum
problem for real numbers, which they could solve using symmetric chain decomposi-
tions of the Boolean lattice Bn. We observed [12] that there is a close correspondence
between their subset problem and the famous Littlewood-Offord problem of combina-
torial number theory.

In Sections 2 and 3, we provide a careful description of the reduction of the ab-
solute compromise problem to a matrix problem and then to a subset sum problem.
An appropriate reduction permits a simple new solution to all of these problems via
Sperner’s Theorem. A new consequence of this approach is the determination of all
extremal solutions for the absolute compromise model, which was announced indepen-
dently by Branković, M. Miller, and Širáň [4].

Section 4 examines natural exensions of the subset sum results in Section 3, al-
though their potential applicability to database security is not yet evident. In partic-
ular, we consider how to maximize the number of subset sums, for a set of n nonzero
vectors in Rm, that hit a target set of k elements in Rm.

In Section 5, we survey results about using the AUDIT EXPERT in other modes,
where the answerable queries are not decided in advance, but rather in response to the
user’s queries.

The second major model of compromise is analyzed in Section 6. We say the
database is relatively compromised if either some record xi or some difference of two
records xi − xj , i 6= j can be determined. Again, via a matrix description, we end up
with a problem concerning the maximum concentration of subset sums

∑
i∈I ai at a

target point, where now the nonzero numbers ai must be distinct. This is the famous
Erdős-Moser problem, which was solved, in large part, by using Sperner theory of
ranked posets. We present a derivation of this solution for the database problem, based
largely on its discovery by M. Miller et al. [24]. Unfortunately, we still cannot describe
all optimal query sets S. However, we shall see in Section 7 that one can describe
asymptotically as n→∞ the maximum number of answerable queries, up to a constant
factor, thanks to work on the Erdős-Moser problem. We also survey extensions of the
Erdős-Moser problem to higher dimensions, including important results of Halász.

Two fundamental new models of compromise are put forth in the remainder of the
paper. We first describe g-group-compromise, which means that some sum

∑
j∈J xj

with 0 < |J | ≤ g can be deduced from S. This problem is translated via a matrix
description to an apparently new problem on subset sums for a set of real numbers, a
refinement of the Littlewood-Offord problem. Further work is needed on this topic.

Second, in Section 9 we describe a model of “internal security.” We propose h-
inside-compromise, which means that some linear combination

∑
j∈I αjxj with 0 <
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|I| ≤ h is revealed, where the αj ’s are nonzero reals. The h-inside security problem is
translated into a striking fundamental geometric question about concentrating subset
sums for a collection of vectors in Rh in general position. Indeed, the security and
general position subset sum problems turn out to have the same optimal values.

In Section 10, we describe two constructions of sets of vectors in two dimensions,
which we learn in the following section are asymptotically optimal to within a con-
stant factor. Upper bounds derived from Halász’s analytical studies are presented. For
general h, we provide an asymptotic upper bound on the maximum number of queries.

The survey concludes by reviewing the main directions for future study.
The close relationship between these natural (even practical) database security

problems about query sums and fundamental mathematical problems is striking. What
is also exciting is to see how, due to the combined insights of many researchers, methods
from linear algebra, number theory, geometry, Sperner theory, probability, and analysis
can be brought to bear on these problems.

Section 2. Basis Matrix

Throughout the paper [n] represents the set {1, . . . , n}. A SUM query from our
database has the form

∑
j∈S xj , where the index set S ⊆ [n]. Given a collection of

distinct SUM queries S := {S1, . . . , Sm}, where each Si ⊆ [n], we can determine any
weighted query they generate by taking linear combinations of these sums. Now for
each SUM query Si there corresponds naturally the 0−1 row vector [si1, . . . , sin] ∈ Rn.
Then from the collection of SUM results for S, we can determine all sums of the form∑n
j=1 ajxj , aj ∈ R for all j, where the row vector of coefficients, [a1, . . . , an] ∈ Rn, is

any linear combination of the SUM query coefficient vectors,

[a1, . . . , an] =
m∑

i=1

λi[si1, . . . , sin],

where the λi’s are arbitrary real numbers.
The set of row vectors [a1, . . . , an] for which we are certain to know the weighted

sum is then described as the row space R(S) of the m× n matrix A(S) = [sij ]. Since
SUM queries correspond to 0 − 1 vectors in Rn, we seek to maximize the number of
0 − 1 vectors in the space R(S). Avoiding absolute compromise means that none of
the standard basis vectors ej = [0, . . . , 1, 0, . . . , 0], with 1 in position j, is in R(S).

Let d denote the dimension of R(S) as a subspace of Rn. Clearly, d < n or
there would be compromise. Let B = B(S) be a basis matrix for R(S) obtained by
elementary row operations (Gaussian elimination) on A(S). Then B(S) is a d × n
matrix whose rows form a basis for R(S). Also, d of its columns are the columns of
the identity matrix Id. If any row of B is a standard basis vector (all zero except the
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single one), then S produced an absolute compromise. Otherwise, it is clear that no
ej belongs to R(S), and there is no compromise.

Let us continue in the case that there is no compromise.

Claim. If d < n − 1, then we may add n − 1 − d independent rows to B while
still avoiding absolute compromise. Equivalently, there is an (n− 1) × n matrix with
independent rows (rank n − 1 over R) which has a row space that contains all query
vectors [si1, . . . , sin] but none of the standard basis vectors ej , which are forbidden.

Proof. Here is one argument to prove this claim. It suffices to show how to add one
row to B = B(S); the operation can be repeated until there are n − 1 rows: Let us
assume that the first d columns of B are are linearly independent, after reordering the
columns, if necessary. Let’s add the row given by the vector ed+1 + αen. For each row
i of the matrix, only one possible value of α must be avoided to keep ei out of the
row space. At most d+ 1 values of α must be avoided altogether, and any other value
is okay. We may select α to be rational, or even integer. Continuing in this way, we
can go until the matrix has n− 1 independent rows. When we started the procedure,
the matrix B(S), obtained by Gaussian elimination from a 0− 1 matrix, had rational
entries. So when we conclude the procedure, with n− 1 rows, we may assume all the
entries are rational.

A second approach to verifying the claim that we can add rows to the basis matrix
B works as follows: Let r1, . . . , rd be the rows of B(S). We claim there is another row
vector v /∈ R(S) such that, for all j,

ej /∈ 〈r1, . . . , rd, v〉,

where 〈w, x, . . .〉 denotes the span of vectors w, x, . . . (over R). Such v avoids creating
one of the forbidden standard basis vectors that would compromise the database.
Equivalently,

v /∈ 〈r1, . . . , rd, ej〉, 1 ≤ j ≤ n,

so that v avoids the finite union of hyperplanes (or smaller subspaces when d < n−2).
Such v clearly exists, even with all rational entries.

This second method of reasoning works well with other models of compromise we
present later in the paper.

After further row reduction, we see that for any set S of queries avoiding compro-
mise, we can produce (after possibly permuting columns) an (n− 1)× n basis matrix

M = M(S) =




1 0 0 . . . 0 a1

0 1 0 . . . 0 a2

0 0 1 . . . 0 a3

...
...

...
. . .

...
...

0 0 0 . . . 1 an−1



. (1)
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The row space of M(S) includes the vectors for all queries Sj ∈ S, but excludes the
standard basis vectors ej . In particular, the entries a1, . . . , an−1 in the last column are
all nonzero reals.

It follows that any set of n − 1 columns of M(S) is linearly independent. So
regardless of what order the columns were originally, we can reach a basis matrix of
the form (1) by suitable row operations.

While we may construct such a matrix for given S in which all ai are rational, one
can construct examples of query collections S such that no matter how the columns
are ordered the basis matrix M(S) will contain some non-integer entries.

To maximize the number of sum queries we can answer without absolute compro-
mise, we see that it is enough to maximize the number of 0−1 vectors in the row space
of the basis matrix, which can be any matrix of form (1). Given nonzero reals ai, such
vectors are obtained as the sum of some subset of the set of rows of M(S) in which
the sum of corresponding entries in column n is 0 or 1. The empty query, for S = ∅, is
one such query. Our problem is to choose M to maximize the number of such sums.

Section 3. Absolute Compromise and the Littlewood-Offord Problem

The problem of maximizing the number of answerable queries without absolute
compromise has now been translated into one about concentrating the subset sums for
a collection of real numbers: We seek to choose nonzero reals a1, . . . , an−1 such that
we maximize the number of the 2n−1 subset sums

∑

i∈I
ai = 0 or 1,

as I ranges over all subsets of [n− 1].
Using symmetric chain decompositions, Miller, Roberts, and Simpson [23] deter-

mined that this maximum is
(
n
bn2 c
)
. It can be achieved by selecting the ai, 1 ≤ i ≤ n−1,

to be
1,−1, 1,−1, 1, . . . or 1, 1,−1, 1,−1, 1,−1, . . . .

For odd n, these coincide. Subsequently, Kevin Miller and Sarvate [22] proved the
uniqueness of these maximum solutions to this real number problem, provided the ai’s
are assumed to be integers. We shall see that the uniqueness extends to all reals ai.

In [12] we discussed the close connection between this real number problem and a
famous problem of Littlewood and Offord [21] concerning the concentration of subset
sums for complex numbers.

The Littlewood-Offord Problem. How does one select numbers a1, . . . , an ∈ C,
not necessarily distinct, with |ai| ≥ 1 for all i, and an open unit diameter ball B, so
as to maximize the number of the 2n sums

∑
i∈I ai, I ⊆ [n], lying inside B?
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A good strategy is to take all ai = 1 and centering the ball B at bn/2c to get(
n
bn2 c
)

sums in B. This turns out to be optimal.

Erdős [7] solved the Littlewood-Offord problem under the restriction that the ai’s
be real. He did this by exploiting a nice connection he found to the theory of ordered
sets via a simple trick that applies as well to our problem: Given any collection of
nonzero numbers a1, . . . , an ∈ R, not necessarily distinct, observe that replacing any
one of them, say a1, by its negative, −a1, merely translates the complete constellation
of 2n subset sums

∑
i∈I ai, I ⊆ [n], but does not in any way change their relative

position. (To see this, notice that the sums
∑
i∈I ai with 1 ∈ I translated by −a1 are

the sums
∑
i∈I\{1} ai, while the sums

∑
i∈I ai with 1 /∈ I translated by −a1 are the

sums
∑
i∈I∪{1} ai except a1 is replaced by −a1.) Thus, to maximize the number of

subset sums inside any unit diameter ball B, it suffices to consider the maximum over
all positive reals ai, which means all ai ≥ 1, and all balls B.

For any such ai’s, and for any index sets I, J with I ⊂ J ⊆ [n], we have

∣∣∣∣∣
∑

i∈J
ai −

∑

i∈I
ai

∣∣∣∣∣ =
∑

i∈J\I
ai ≥ |J\I| ≥ 1.

Thus, not both
∑

i∈J ai and
∑

i∈I ai belong to any ball B.
Hence, the collection of subsets

{I ⊆ [n] :
∑

i∈I
ai ∈ B}

is an antichain in the Boolean lattice Bn of all subsets of [n], ordered by inclusion. (An
antichain in a poset P = (P,≤) is a subset A of P such that no two of its elements
p 6= q ∈ A satisfy p ≤ q.) As Erdős observed, Sperner’s Theorem [30] applies. It says

that
(
n
bn2 c
)

is the largest size of any antichain in Bn.

For our real number problem, one can introduce an nth number, denote it by an,
which we shall set to −1. Then the number of subsets I ⊆ [n−1] with

∑
i∈I ai = 0 or 1

is the same as the number of subsets J ⊆ [n] such that
∑

i∈J ai = 0. We then consider
the broader problem of maximizing, over all choices of nonzero reals a1, . . . , an and all
target sums t, the number of subsets I ⊆ [n] such that

∑
i∈I ai = t. We no longer have

the lower bound |ai| ≥ 1 from the Littlewood-Offord problem, since we only demand
that ai 6= 0. However, since our target set is just a point now, instead of a ball, the
same arguments apply, and we get that the maximum is again

(
n
bn2 c
)
. This can be

achieved with t = 0 and an = −1 when we pick ai = (−1)i for 1 ≤ i ≤ n− 1.
Further, for our real number problem, our approach yields all maximum solutions.

Sperner described all maximum-sized antichains in Bn: For all n, one can take the
collection of all subsets of size

⌊
n
2

⌋
, or for odd n, another choice is the collection of
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all subsets of size
⌈
n
2

⌉
. These solutions force all ai to be equal up to sign in our real

number problem. For a target value t = 0, the only choices of a1, . . . , an−1 to go with
an = −1 that achieve the maximum are, up to reordering the ai’s, the one (resp., two)
choices for odd (resp., even) n described earlier.

Determining all maximum solutions for the basis matrix problem solves a problem
of Mirka Miller, Roberts, and Simpson [23, p.57]. A paper by Kevin Miller and Sarvate
[22] proved that these are the only choices for the ai’s in M(S) allowing the maximum
number of queries, but only in the case that the ai’s are restricted to being integer.
Further, their arguments, using the symmetric chain decomposition, are more elaborate
than ours. However, their success in the integer case provided the inspiration for us to
continue the project.

We originally solved the maximum solution problem for the basis matrix (or the
equivalent real number version) in our earlier paper [12]. Our new proof above here,
which uses the trick of introducing an = −1 (an idea also used in [4]), is actually shorter
and relies only on Sperner’s original theorem, whereas the previous proof needed the
essential uniqueness of extremal k-families in Bn. On the other hand, the earlier proof
extended to more general problems.

Different proofs of this matrix result were developed independently by Branković
and Miller, using symmetric chain decompositions in one instance and Lubell-type
inequalities for the other [2, 22], but they are not as simple as the proof here.

Looking at what the matrix interpretation for the maximum solution(s) tells us
about the original Absolute Compromise Problem, we find that there is a simple de-
scription of all maximum-sized sets of SUM queries.

Theorem 3.1. Let S = {S1, . . . , Sm} ⊆ 2[n] be a collection of index sets of distinct
SUM queries that can be answered without absolute compromise from a database of
n real entries xi. Then m ≤

(
n
bn2 c
)
. Equality is achieved for all n precisely when the

set of entries is partitioned into two parts, of sizes
⌊
n
2

⌋
and

⌈
n
2

⌉
, and S consists of all

queries with an equal number of elements from each part.

Proof. The discussion above reduced the problem of maximizing the number of SUM
queries avoiding absolute compromise to that of considering the entries a1, . . . , an−1

in the last column of a basis matrix M(S). For an optimal solution of this problem, let
I consist of indices i such that ai = 1, and let Ī = [n]\I. The allowable queries for the
solution correspond naturally to the 0 − 1 characteristic vectors that indicate which
entries xi are to be added. Each is in the row space of M . We observe that each vector
in the row space has half of its entries indexed in I and half indexed in Ī: If the vector
has last component 0, then it sums as many 1’s as −1’s (but leaves out xn), while if it
is 1, then it sums one more term in I than in [n− 1]\I, but the 1 indicates that xn is
also to be included, and n ∈ Ī.

To better understand how the collection S in the theorem works, consider the
example where the database entries are the salaries of the members of a particular
mathematics department. Suppose the department is evenly split between two factions,
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good guys and bad guys. To maximize the number of answerable queries, only those
sums will be given that involve the salaries of exactly as many good guys as bad
guys. That this does not compromise the database can be seen by observing that if
all bad guys are given a raise in salary of D dollars, while all good guys are given a
cut of D dollars, there is no change to any of the answerable queries, and no change
is detected. Note that this works even when n is odd, and there is an “extra” person
in the department, good or bad.

Independently of our working out the theorem above, an equivalent result has
been announced by M. Miller et al. [5].

M. Miller et al. define the usability U of a database to be the ratio of the number
of answerable queries avoiding compromise to the total number of possible queries,
2n for a database of n records. It is important to consider the maximum usability
asymptotically as n→∞, which we can do with Stirling’s formula.

Corollary 3.2. [23] The maximum usability of a database of n records that avoids

absolute compromise is U =
(
n
bn2 c
)
/2n = Θ(n−1/2) as n→∞.

Section 4. Extensions to Higher Dimensions

The original Littlewood-Offord problem allowed complex numbers ai, and Erdős’s
solution for real ai could not be extended to two dimensions, though asymptotic results
suggested that

(
n
bn2 c
)

is still the answer in the complex case. It was not until 20

years later that Katona and Kleitman independently proved it [16,17]. Then in 1970
Kleitman [18] showed that in general dimension Rm the maximum number of subset

sums
∑
i∈I ai inside an open unit diameter ball remains

(
n
bn2 c
)
, over all a1, . . . , an ∈ Rm

with |ai| ≥ 1 and over all such balls.
The methods devised to obtain these results–all related to Sperner-theoretic argu-

ments about the maximum size of a family of subsets of [n] satisfying some condition–
can be adapted to the concentration of subset sums in Rm at a target set of one or
several points.

In our situation, we can even describe all extremal solutions, which is not really
possible when the target is a ball instead of a finite collection of points. Obtaining
these extremal solutions depends on our using the appropriate tools, since although
Kleitman’s proof in Rm gives the correct bound, it does not reveal much information
about the extremal solutions themselves.

Theorem 4.1. [12] Let a1, . . . , an ∈ Rm\{0}. Let T = {x1, . . . , xk} ⊆ Rm, k ≤ n+1.
The number of sums

∑
i∈I ai ∈ T is maximum, the sum of the k middle binomial

coefficients in n, if and only if each ai = a1 or −a1, and, letting λ = |{i : ai = a1}|,
the set T contains k middle points in the sequence

{(λ− n)a1, (λ− n+ 1)a1, . . . , λa1}.
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The proof relies on the essential uniqueness of the maximum-sized k-families
(union of k antichains) in the Boolean lattice Bn.

Section 5. Complexity of Dynamic Mode Use of Audit Expert

Thus far, we have only considered Audit Expert used in the non-adaptive “static
mode” in which it is decided in advance which queries are answerable. We determined
how to do this so as to maximize the number of answerable queries.

An adaptive set-up, called “dynamic mode”, answers queries successively one-by-
one in a session, but refuses to answer any query that when combined with previously
answered ones leads to absolute compromise. At any given time in the session, a basis
matrix can be stored describing what is already known (but the columns may not
be in order as in (1)). When another query is made, the corresponding row vector is
attached to the matrix, Gaussian elimination is applied, and we can check whether

(a) the new row is dependent on the old ones (then answer the query but drop the
new row from the basis matrix),

(b) it is independent of the others and leads to a compromise (then drop the row, but
don’t answer the query), or

(c) it is independent but does not lead to compromise (answer it and retain the row).

This can be done efficiently.

But compromise under “dynamic mode” can happen quickly: any collection of n
linearly independent vectors span Rn, so compromise the database. In fact, M. Miller
et al. [23] observed that as few as n queries could be answered: If ai = 1 for all i in
M(S) this happens, i.e., if one answers the queries xi + xn, 1 ≤ i ≤ n − 1, then no
further query can be answered, other than the empty one, without compromising the
database! The usability in this instance is merely n/2n.

Branković, Miller, and Širáň [4] proposed a “hybrid mode” as a way to react
dynamically while maintaining high usability. The user’s question will be answered
whenever the answered queries belong to some set of answerable queries of maximum
usability. In view of Theorem 3.1, we must check whether there is a 2-coloring of the
index set [n], which is equitable in the sense that the color classes are used the same
number of times within one, such that every answered query involves an equal number
of indices of each color.

The natural decision problem suggested now is this:

Problem AE

Instance: A set [n] and a collection S ⊆ 2[n].

Question: Is there an equitable 2-coloring of [n] into sets R,B such that for every
S ∈ S, |S ∩R| = |S ∩ B|?

Theorem 5.1. [4] Problem AE is NP-complete.
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Branković et al. prove this result by a transformation from the problem 3SAT. Our
description of the problem is simpler, though equivalent; in [5] they have essentially
arrived (independently) at the same equitable 2-coloring idea.

Of course, if S contains any subset (query) of odd size, there is no such 2-coloring,
so there is no way to achieve maximum usability.

In [4] the authors go on to consider the restriction of this equitable 2-coloring
problem to the case that every subset (query) in S has size 2. They show the problem
is polynomially solvable in this case. We give the following self-contained explanation:
The subsets can be viewed as edges of a graph with vertex set [n]. We are then asking
whether there is an equitable 2-coloring of the vertices where each edge meets both
color classes. Of course, this is impossible when there is an odd cycle, since no 2-coloring
at all is possible.

If there is no odd cycle, then the coloring is forced except in every component one
can interchange the two color classes. Let us say that there are c components in this
graph, and the absolute value of the difference in the sizes of the two color classes in
the ith component is di, 1 ≤ i ≤ c. The problem now is whether there exists I ⊆ [c]
such that

∑
i∈I di =

∑
i/∈I di. Starting at j = 1 we keep track of all possible values of∑j

i=1 εidi, where each εi is 1 or −1. An update to j + 1 simply requires working out
s + dj+1 and s − dj+1 for each sum s achieved with d1 through dj. Since we started
with n vertices, the possible values of s are the integers in [−n, n]. At the end, when we
treat dc, we must only check whether 0 occurs as one of the sums, to decide whether
there is a coloring as desired. Further, we can obtain such a coloring explicitly if we
store a sign for each s at each stage j+1 to indicate how we got there from the previous
value j.

Section 6. Relative Compromise and the Erdős-Moser Problem

There is a second model of compromise that further restricts the allowable sets of
queries and again has interesting connections to number theory and to ordered sets.
This was described in another paper by M. Miller et al. [24, cf. 25]. We hope that
discussing it here, building on our approach to the absolute compromise problem, will
lead to a better understanding of it.

In terms of the salary model, we now want to prevent not only the revelation of
some individual’s salary, but also it cannot be determined how much more someone
makes than someone else. To be precise, in terms of the database, we say there is a
relative compromise if our queries determine either some entry xi or some difference
of entries xi − xj , i 6= j.

The arguments leading to the basis matrix for absolute compromise adapt easily to
relative compromise. Again we are avoiding just a finite set of vectors in the row space
R(S), as it cannot contain any standard basis vector ei or any difference ei− ej , i 6= j.
Every compromise-avoiding collection S is spanned by a (n − 1) × n basis matrix

11
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M(S) of form (1) as before, with rational entries. The conditions on the last column
are now more restrictive: Each ai 6= 0 (to avoid ei), ai 6= −1 (to avoid ei − en), and
ai 6= aj, i < j < n (to avoid ei−ej). Again, any n−1 columns are linearly independent,
so we are not giving up anything by putting the identity matrix In−1 in the first n− 1
columns. We now face a number theory problem: We seek to select ai’s subject to these
conditions to maximize the number of subset sums

∑
i∈I ai, I ⊆ [n − 1] that equal 0

or 1.
A trick similar to the absolute compromise problem simplifies matters here. Ar-

tificially introduce a term an = −1 and look only for subset sums equal to 0. That is,
it is equivalent to ask for distinct nonzero reals a1, . . . , an to maximize the number of
subset sums

∑
i∈I ai, I ⊆ [n] equal to 0. Note that for any solution to this last problem,

we need only divide all ai by the same quantity, −an, to get another solution in which
an = −1 that we can use to give us a1, . . . , an−1 for our matrix problem.

What changed from the case of absolute compromise is that we now require distinct
numbers ai. In fact, Erdős and Moser [8] posed a general version of this natural question
over 30 years ago.

The Erdős-Moser Problem. How does one select distinct nonzero reals a1, . . . , an
and a target sum t to maximize the number of subset sums = t?

A wise choice, for it turns out to be an optimal one, is to select n integers closest
to 0 and target t = 0. It is fortunate that optimality can be achieved with t = 0, since
our problem required this. Before describing the surprising link between this number
theory problem and ordered sets, we record what this means for the database problem.

Theorem 6.1. [24] Let S be the index set of SUM queries from a database of n entries
that avoids relative compromise. Then |S| is maximized if it corresponds to the row
space of the the matrix M(S) with values in the last column given by

1, 2,−2, 3,−3, 4, . . . .

The pattern for the last column begins irregularly: It omits −1 since that had
to be reserved for an. We cannot think of as nice a description of S as we did for
the absolute compromise problem in Theorem 3.1, so we are forced to rely on the
description in terms of M(S). We also do not believe anyone has been able to describe
all solutions to the number theory problem; we are able only to describe some of them
with this theorem. (We discuss the asymptotics in the following section.)

To see the connection to ordered sets, it is best to consider first the variant of the
Erdős-Moser problem that asks for n distinct positive real numbers ai and a target t
to maximize the number of subset sums

∑
i∈I ai = t. For instance, a wise choice is to

take ai = i and t = b(1 + 2 + · · ·+ n)/2c.
Lindström [20] observed that for given positive ai’s, say 0 < a1 < · · · < an, and

target t, the collection

{I ⊆ [n] :
∑

i∈I
ai = t}

12
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contains no two sets I, J where J is obtained from I by some combination of inserting
elements and/or replacing elements by larger ones. That is, this collection of subsets
is an antichain, not merely in the Boolean lattice, but in the more fully ordered poset,
we denote by M(n) = (2[n],≤), on the subsets of [n] ordered as follows: We have
I ≤ J whenever we insert elements into I or we replace elements by larger ones. For
instance, in M(5) we have {2, 4} ≤ {1, 3, 5}. This poset M(n) is ranked, since an
element {i1, . . . , ir} has rank

∑
j ij . The rank of the whole poset is (1 + 2 + · · ·+ n).

It is a self-dual poset.
For the “wise choice” ai = i above, setting t = b(1 + 2 + · · ·+ n)/2c gives all

elements I in the middle rank t of M(n) as the sums
∑
i∈I ai = t. Lindström [20]

observed that this choice must be optimal, provided one can prove that the middle
rank set in M(n) is an antichain of maximum size.

Stanley proved this is indeed true (and much more) [31, cf. 32] when he devel-
oped machinery to construct nice decompositions of various ranked posets into chains.
Specifically, he showed that an assortment of posets have collections of symmetric
chains as follows: Letting n denote the rank of such a poset P , there exists for each
i < n/2 a collection of disjoint chains that meet each of the ranks from i through n− i
and which cover ranks i and n − i. In particular, the chains each meet the middle
rank(s). It can be deduced that the middle rank of such posets P is an antichain of
maximum size. The poset M(n) turned out to be one of the posets Stanley came up
with, and Harper noted the connection to Lindström’s work.

The property that no antichain is larger than the largest rank is called the Sperner
property , a term motivated by Sperner’s Theorem, which implies that the Boolean
lattice Bn has this property. The author [11] noted that Stanley’s chain partition
implies stronger Sperner-type properties for his posets. What has come to be known
as the Peck property holds if a ranked poset P has a symmetric, unimodal sequence of
rank sizes, and for all k, selecting the union of k middle ranks in P gives a maximum-
sized union of k antichains. Stanley’s chain partition shows in particular that M(n) is
Peck.

This is important for solving the Erdős-Moser problem. For let us consider a
general set of distinct nonzero reals ai, with, say, l positive ones and n − l negative
ones, which we may denote by

bl > · · · > b1 > 0 and 0 > c1 > · · · > cn−l.

For any index sets J ⊆ [l] and K ⊆ [n− l], the corresponding subset sum
∑

j∈J
bj +

∑

k∈K
ck

increases if J goes up in order M(l) or K goes down in order M(n− l). For any target
sum t, the collection of index sets

{I ⊆ [n] :
∑

i∈I
ai = t},

13
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which corresponds to

{(J,K) : J ⊆ [l], K ⊆ [n− l],
∑

j∈J
bj +

∑

k∈K
ck = t},

forms an antichain in the product poset M(l) ×M(n − l)D, where PD denotes the
order dual of poset P . As Stanley observed [31], this poset must also be Peck (by
the Peck product theorem, for instance), hence also Sperner, and its middle level is
maximum-sized. So one can do no better than to select bj = j, ck = −k for all j, k.

But what value of l is the best for the Erdős-Moser problem? It is easily checked
that the rank-generating function for M(l) is

(1 + q)(1 + q2) · · · (1 + ql),

where the coefficient of qi in the expansion is the number of elements of rank i. The
product of the functions for M(l) and M(n− l) is what we need, and it can be shown
that the maximum middle coefficient is achieved by taking l = bn/2c. In this way,
the Erdős-Moser problem is solved, and we obtain Theorem 6.1. Peck [27] describes a
proof of Erdős-Moser from the positive number version.

We note that Stanley’s original chain construction arguments relied on results
from algebraic geometry. For the case of M(n), Proctor showed that linear algebra
arguments are sufficient to derive the Peck property, although some choices in his
proof are motivated by insights from Lie algebras [28]. We are not aware of any purely
elementary proofs that M(n) is Peck.

Section 7. Asymptotics and Extensions for Relative Compromise

Now we wish to determine the asymptotic behavior of the maximum number of
queries avoiding relative compromise. We now know how to exactly achieve the maxi-
mum number of queries for a database with n records without a relative compromise.
But what is this maximum asymptotically, in comparison to the C2nn−1/2 behavior
for absolute compromise? For the Erdős-Moser problem, Sárközy and Szemerédi [29]
already worked out the asymptotics, up to a constant factor, some ten years before it
was actually solved. Applied to relative compromise we obtain the following bounds.

Theorem 7.1. Let r(n) denote the maximum size of a set S of queries from a database
of n records that avoids relative compromise. There exist constants C,C ′ > 0 such that
for all n,

C2nn−3/2 < r(n) < C ′2nn−3/2.

Although Sárközy and Szemerédi only considered sets of n distinct positive real
numbers ai, it is simple to extend their result (up to a constant factor) to the Erdős-
Moser problem with distinct nonzero reals. The clever indirect proof of the Sárközy-
Szemerédi upper bound relies in part on Sperner’s Theorem, incidentally. For their
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lower bound, they only say that it is “leicht zu sehen” (easy to see). It will be instructive
for us to sketch a proof here, to illustrate a method that we will use again later on.

Observe that for any n reals ai, the distribution of subset sums
∑
i∈I ai is the

same, after multiplication by 2−n, as that of the distribution of the random variable
X :=

∑n
i=1 aiXi, where the Xi are i.i.d. 0 − 1 variables. We examine this random

variable next.

Lemma 7.2. Let a1, . . . , an ∈ R and letX1, . . . , Xn be independent random variables,
where each Xi is 0 or 1 with probability 1/2 each. Define

X :=
n∑

i=1

aiXi.

Then

E(X) =
n∑

i=1

ai/2 and V ar(X) =
n∑

i=1

a2
i /4.

In the solution to the Erdős-Moser problem, the ai are n integers closest to zero.
Applying the Lemma, our variable X has mean µ either zero (even n) or ±(n+ 1)/4

(odd n) and standard deviation σ ∼ (n3/48)1/2. Now by Chebyshev’s inequality,

Pr(|X − µ| ≤ 2σ) ≥ 1− (1/2)2 = 3/4,

so that at least 3/4 of the 2n subset sums lie in an interval of just ∼ Cn3/2 consecutive

integers. Thus, some value occurs at least C2nn−3/2 times as a subset sum, which gives
the stated lower bound.

Extensions of the Erdős-Moser problem were given by the imaginary mathemati-
cian, G. W. Peck [27]. Specifically, the same maximum number of subset sums equal
to a target point applies in arbitrary dimension, where a1, . . . , an are distinct nonzero
vectors in Rm and the target t ∈ Rm. More generally, suppose we do not insist on
distinct nonzero vectors ai, but we still restrict the number of times that any vector
is used.

Theorem 7.3. [27] Fix integers k and b1 ≥ b2 ≥ · · · ≥ bs > 0,
∑s
i=1 bi = n. Let

a1, . . . , an ∈ Rm such that no u vectors in Rm occur altogether more than
∑u
i=1 bi

times. Then for any set T of k target points in Rm, the number of subset sums∑
i∈I ai ∈ T is at most the sum of the k middle coefficients of the polynomial

2b1
bs/2c∏

j=1

(
1 + qj

)b2j+b2j+1
.

The bound is achieved by taking the ai’s to consist of b1 0’s, b2 1’s, b3 −1’s, and
so on.
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Halász considers results of both Littlewood-Offord and Erdős-Moser types in di-
mensions m ≥ 2. He investigates what happens when we add the restriction that not
all n vectors ai can be confined to the neighborhood of a lower-dimensional space. This
leads to more restrictive bounds on the number of subset sums all the same (or inside
a unit ball):

Theorem 7.4. [14] Let B be an open ball of unit diameter in Rm, m arbitrary. Let
0 < δ < 1. Suppose a1, . . . , an ∈ Rm are such that for any unit vector e ∈ Rm, the
inner products

|(ai, e)| ≥ 1

for at least δn vectors ai. Then there exists a constant C = C(m, δ) such that the

number of the 2n subset sums
∑
i∈I ai ∈ B is at most C2nn−m/2. Moreover, there

exists C ′ = C ′(m, δ) such that if, in addition to the above conditions,

|ai − aj | ≥ 1 for all i 6= j,

then the number of subset sums
∑

i∈I ai ∈ B is at most C ′2nn−1−m/2.

Section 8. Group Security and Avoiding Zero Sums for Small Subsets

Other models of compromise arise naturally in the context of the database SUM
query set-up. Besides their intrinsic interest and potential applicability, they may give
rise to interesting new problems about concentrating subset sums.

One such model, suggested by my current student, Éva Czabarka, we call the group
security model. Fix a group size g, which is an integer ≥ 1. We say that a collection S
of SUM queries

∑
j∈Si xj from our database, Si ∈ S, produces a g-group-compromise

if some nontrivial sum of at most g entries (i.e.,
∑
j∈J xj for some index set J ⊆ [n],

1 ≤ |J | ≤ g) is determined. Of course, 1-group-compromise is the same as absolute
compromise.

For example, taking the salary model with g = 5, such a compromise would mean
that the salary sum–and, hence, the average salary–would be determined for some
nonempty group of at most 5 people in the department.

For a collection S of distinct queries, S avoids g-group-compromise whenever the
row space R(S) does not contain any of the vectors

∑
j∈J ej , ∅ 6= J ⊆ [n] with |J | ≤ g.

We still forbid just a finite number of vectors, so as with absolute compromise, we
can check via Gaussian elimination whether S produces g-group-compromise. If not,
we can construct a basis matrix of form (1) that avoids compromise and generates all
vectors for S. Again, we may assume all ai are rational.

Again, we may artifically introduce an = −1 to simplify our problem. The max-
imum number of subset sums = 0 or 1 that we want for the matrix will be the same
as for this real number problem:
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The Problem of Avoiding Zero Sums for Small Subsets. Given n ≥ g ≥ 1,
we seek a1, . . . , an ∈ R such that the number of subset sums

∑
i∈I ai = 0, I ⊆ [n], is

maximized subject to the restriction that no sum
∑
i∈I ai = 0 with 0 < |I| ≤ g.

This is an interesting, if rather specialized, extension of the real number problem
(a variation of the Littlewood-Offord problem) we encountered in connection with
avoiding absolute compromise. It deserves study for its own sake. However, so far we
have found no connection to posets similar to that for absolute or relative compromise.
Naturally, it would be interesting to consider the extension of this problem to higher
dimensions.

Section 9. Internal Security and Sums of Vectors in General Position

Motivated particularly by the salary model, we introduce another new model of
database compromise. It leads to an interesting new subset sum problem. Let the data
records xi represent salaries of department members. Suppose the ith person in the
department, Gyuszi, determines some linear combination αxi + βxj of his own salary
and that of the jth department member, Zsuzsi. Here, j 6= i and α, β are any real
numbers with β 6= 0. Then Gyuszi can solve for Zsuzsi’s salary, xj, since he already
knows xi, something our absolute and relative compromise models do not allow for.

To prevent compromise by queries from an “insider” like Gyuszi, we see that we
must prevent the determination of any such expression αxi + βxj with i 6= j except
when α = β = 0. More generally, for fixed integer h ≥ 1, we say a collection of
queries S produces h-inside-compromise if one can determine some linear combination∑
j∈I αjxj where all αj 6= 0 and 0 < |J | ≤ h. So absolute compromise is equivalent to

1-inside-compromise, while 2-inside-compromise is the situation in the last paragraph
that we want to avoid. Relative compromise implies 2-inside-compromise, but not
necessarily the other way around.

We seek the maximum number of queries |S| avoiding h-inside-compromise. Let
us denote this maximum by qh(n). For h-inside-compromise, it is difficult to come up
with a candidate optimal solution, or even one that merely seems very good, even for
h = 2. We must be satisfied with asymptotic bounds at this time. However, we see
that our query problem is actually equivalent to a natural, and evidently new, problem
about maximally concentrating sums of vectors in “general position” in Rh. Let us
now derive this result.

We consider the matrix interpretation of maximizing the number of queries. Form-
ing a d × n basis matrix B(S) as in Section 2, we require that the row space R(S)
contains no nonzero vector of weight ≤ h, where the weight of v = (v1, . . . , vn) ∈ Rn

is the number of components 6= 0.
Next we discuss adding rows to the matrix B(S). Let us denote the rows of B(S)

by b1, . . . , bd ∈ Rn. We want that their span 〈b1, . . . , bd〉 = R(S) contains no nonzero
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vector of weight ≤ h. Equivalently, for any h standard basis vectors ei1 , . . . , eih ∈ Rn,
i1 < · · · < ih, the set {b1, . . . , bd, ei1 , . . . , eih} is linearly independent. For d < n − h
we claim we can add another row to B(S): Select any

bd+1 /∈ ∪1≤i1<···<ih≤n〈b1, . . . , bd, ei1 , . . . , eih〉,

so that we merely have to avoid the union of
(
n
h

)
hyperplanes (or smaller subspaces)

in Rn. In fact, one may assume that all entries of bd+1 are rational, or even integer.

We may continue to add independent rows to B(S) until we have n− h of them.
Performing Gaussian elimination, we obtain, after permuting the columns if necessary,
an (n− h)× n basis matrix

M = M(S) =




1 0 0 . . . 0 a11 . . . a1h

0 1 0 . . . 0 a21 . . . a2h

0 0 1 . . . 0 a31 . . . a3h

...
...

...
. . .

...
...

...
...

0 0 0 · · · 1 an−h,1 . . . an−h,h



.

This matrix consists of the identity In−h on the left together with rows a1, . . . , an−h ∈
Rh on the right. It turns out that avoiding h-inside-compromise means that any set
of h vectors from

N(S) := {a1, . . . , an−h, e1, . . . , eh},

where the ei are the standard basis vectors in Rh, is linearly independent, i.e., a basis.
Our goal is to choose such ai so as to maximize the number of subset sums

∑
i∈I ai,

I ⊆ [n−h], that belong to the target set {0, 1}h. Each such sum in {0, 1}h corresponds
to a query vector in Rn.

A question that arises naturally in connection with this is to estimate how many
subset sums, at most, equal the same target vector for a set of vectors in Rh, any h
of which are a basis.

General Position Subset Sum Problem. Given positive integers n, h, how can one
select vectors a1, . . . , an ∈ Rh and a target t ∈ Rh to achieve the maximum number
fh(n) of the 2n subset sums

∑
i∈I ai, where I ⊆ [n], equal to t, provided that every h

of the vectors ai are linearly independent?

Notice that for h = 1 dimension, this is just our real number problem from Section
3, the point target analogue of the real version of the Littlewood-Offord problem. For
general h, it is a higher-dimensional analogue of the Erdős-Moser problem, in which
“distinctness” of real numbers ai is replaced by the “general position” condition on
the vectors ai. Indeed, this subset sum problem is in fact equivalent to our h-inside-
compromise problem.
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Theorem 9.1. For all n, h ≥ 1, the maximum number qh(n) of queries from a set
of n records that avoids h-inside-compromise equals the maximum number fh(n) of
subset sums equal to the same target vector t over all sets of n vectors in Rh in general
position and all targets t ∈ Rh.

Proof. For n ≤ h we immediately get qh(n) = fh(n) = 1 from the definitions. Hence-
forth, assume n > h.

As described above, our database problem has been transformed to a subset sum
concentration problem in Rh. It suits our purposes, given vectors a1, . . . , an−h ∈ Rh

that satisfy the condition on N(S) above, to artificially introduce vectors

an−h+i = −ei, 1 ≤ i ≤ h.

Defining N ′(S) = {a1, . . . , an}, the subset sums over a1, . . . , an−h that belong to
{0, 1}h correspond naturally to subset sums over N ′(S) that equal the zero vector.
By our conditions, any h vectors in N ′(S) form a basis. So we have an instance of the
general position problem, where the target sum t = 0 and where the last h vectors ai
form the standard basis.

Notice that setting t = 0 is no restriction since for any instance of the general
position problem, we may apply Erdős’s sign reversal trick: Take any I such that∑
i∈I ai = t, and replace each ai, i ∈ I by −ai, which will then give just as many

sums = 0 as were originally = t. Further, including the standard basis vectors is no
restriction in the general position problem! For suppose we have vectors a1, . . . , an as in
the general position problem, where any h of them are linearly independent, and target
t = 0. Let us define a linear transformation generated by the basis correspondence
an−h+i 7→ −ei, 1 ≤ i ≤ h. This produces a new set of n vectors in Rh, such that any
h of them form a basis, with just as many subset sums equal to 0. This is an instance
of the problem we got in reducing the query problem. Therefore, both problems have
the same maximum, and the theorem is proved.

Section 10. Constructions for the General Position Problem in Two Dimensions

We now concentrate on the case h = 2 of the general position problem. We
have seen that it is of particular interest in connection with the salary model for the
database. Unlike the Littlewood-Offord problem (and its real analogue), it is not so
obvious what the optimal configuration of ai’s is likely to be. We shall describe two
approaches that turn out to be asymptotically optimal to within a constant factor.
Both can be analyzed by the elementary probabilistic methods we used earlier.

Our first construction is to adapt the one-dimensional Erdős-Moser solution by
taking the ai’s to be

(1, 0), (1, 1), (1,−1), (1, 2), (1,−2), . . . ,
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which are the n lattice points closest to the origin on the line x = 1. These vectors are
clearly pairwise independent. Arguing as with the Erdős-Moser solution, we find that
over half of the 2n subset sums hit lattice points in a rectangle centered at (n/2, 0)

with width ∼ Cn1/2 in the x-direction and width ∼ C ′n3/2 in the y-direction, so that
some sum occurs at least on the order of 2nn−2 times.

Another construction, which effectively spreads out the vectors in a different way,
was suggested by Füredi at the Balatonlelle conference (July, 1996). Fix an integer
k > 0 and consider the set of vectors

Sk := {(i, j) ∈ Z2 : 1 ≤ i, j ≤ k},
which consists of the lattice points in a square in the first quadrant. Define the set Fk
to consist of those vectors (i, j) ∈ Sk such that i and j are relatively prime. This set is
closely related to the Farey series in number theory. A well-known result of Dirichlet
[15, Thm. 331; cf. 19, p. 337] informs us that over half the vectors in the square Sk
are included, specifically,

|Fk| ∼
6

π2
k2.

Thus, we get n vectors in Fk by taking k ∼ (π/61/2)n1/2, denote them by a1, . . . , an ∈
R2 and write ai = (ui, vi). Our vectors are pairwise independent, as we have selected
the shortest vector in every direction from Sk, eliminating all longer multiples.

For this Farey construction, we apply the probabilistic method separately to each
coordinate, with X =

∑n
i=1 uiXi, to show that at least half of the 2n subset sums for

the ai’s hit lattice points in a square centered at the point (m,m) with

m = E(X) = Θ(n3/2),

with the length of each side being 4σ, where

σ =
(∑

u2
i /4
)1/2

= Θ(k2) = Θ(n1).

So our square encloses just Θ(n2) lattice points, and some sum must occur at least on
the order of 2nn−2 times as n→∞.

It follows from either of the two constructions that f2(n) grows with n at least as
fast as some constant times 2nn−2. (For more details, please refer to [13].)

Theorem 10.1. There exists a constant C > 0 such that for all n ≥ no,
f2(n) = q2(n) > C2nn−2.

We described this problem and these constructions to Paul Erdős, in our last
meeting with him in July, 1996, at the Balatonlelle conference. This was before we had
worked out the asymptotic lower bounds above. He expressed his firm belief that the
second (Farey) construction must be essentially the right one for the two-dimensional
subset sum concentration function, f2(n). Indeed, we propose the
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Two-Dimensional Conjecture. We expect that there exists a constant C such that
as n→∞,

f2(n) = q2(n) ∼ C2nn−2.

In the next section, we shall complete the proof that this is true to within a
constant factor. To honor Erdős’s legacy, those of us who survive him must complete
the job on this problem and extend the solution to higher dimensions, which is not yet
as well understood.

Section 11. Upper Bounds for the Internal Security Problem

In Balatonlelle (July, 1996) I asked for a general upper bound on qh(n), a bound
that would tighten as h grows. Noga Alon suggested a sphere-packing argument that
gives such a bound.

Theorem 11.1. The maximum number of distinct queries of a set of n records that
avoids h-inside-compromise satisfies

qh(n) ≤ 2n/

bh/2c∑

i=0

(
n

i

)

= O(2nn−bh/2c), as n→∞.
Proof. A subset of [n] corresponding to a SUM query in turn corresponds to a 0− 1

vector of length n, its characteristic vector. Define the ball B(I) ⊆ 2[n] for I ⊆ [n] to
consist of all subsets J ⊆ [n] within Hamming distance bh/2c of I (i.e., |J∆I| ≤ bh/2c).
Then, for any two sets I 6= I ′ ∈ S, where S avoids h-inside-compromise, the Hamming
distance between I and I ′ is more than h, so the balls B(I) and B(I ′) are disjoint.
The bound follows.

For h = 2 dimensions, this gives us

f2(n) = q2(n) = O(2nn−1),

but we can do better. For any vectors a1, . . . , an ∈ R2 in general position (meaning
here that no vector ai is a multiple of some aj , j 6= i), take any vector v ∈ R2 such that
the projections a1 · v, . . . , an · v are distinct and nonzero. Then

∑
i∈I ai = t implies∑

i∈I ai · v = t · v. Thus, the maximum number of subset sums equal to the same

target, q2(n), is at most the number of solutions to the Erdős-Moser problem with n

real numbers, which by Sárközy-Szemerédi is ∼ C2nn−3/2. This improves our bound
by a factor of n−1/2.

Just as we were finishing this survey, the paper of Halász mentioned earlier [14]
came to our attention, and it leads to a further improvement of the upper bounds
above in all dimensions h ≥ 2. Its impact on our study of internal compromise is
fundamental.
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Theorem 11.2. Let h ≥ 2. Then as n→∞,

fh(n) = qh(n) = O(2nn−1−h/2).

Proof. We seek to use Halász’s Theorem 7.4. Suppose we have vectors a1, . . . , an ∈ Rh,
h ≥ 2, that achieve the maximum concentration fh(n) = qh(n) at a target t in the
general position subset sum problem. Since the vectors are distinct, there exists ε1 > 0
so that

|ai − aj | ≥ ε1 for all i 6= j.

For any unit vector e ∈ Rh, at most h − 1 of the vectors ai are orthogonal to e, due
to the general position condition. Let us define s(e) to be the hth smallest of the n
values |(ai, e)|. By compactness, there exists ε2 > 0 so that

s(e) ≥ ε2 for all unit vectors e.

“Blowing up” the vectors ai and the target t by scalar multiplication by the same real
number λ > 0 preserves the maximum concentration at a single target point. For any
fixed δ < 1, blowing up by sufficiently large λ ensures that the conditions of the second
part of Theorem 7.4 are satisfied for n sufficiently large (for δ = 1/2, say, n ≥ 2h will
do). We then obtain the stated bound on the number of sums hitting the same target
point.

This result, for h = 2 dimensions, combined with Theorem 10.1, yields the solution
to the Two-Dimensional Conjecture, to within a constant factor.

Corollary 11.3. As n→∞,

f2(n) = q2(n) = Θ(2nn−2).

Halász notes two constructions in connection with the second part of Theorem
7.4 that relate directly to our situation. One method Halász describes is to take an
extremal configuration in dimension h−1 and then translate it orthogonally by a fixed
large vector to get a configuration in dimension h. For instance, if we take the solution
to the Erdős-Moser problem, an orthogonal translate by one unit in two dimensions is
essentially our first construction in Section 10. (However, going up to three dimensions,
taking an orthogonal translate of this two-dimensional construction, does not appear
to satisfy the first condition of 7.4; we’re not sure what Halász meant.)

The second Halász construction does the following for general dimension h. The
method is to take all integer component vectors that fit inside a ball centered at the
origin, where the radius is taken to be just large enough that we have as many vectors
as we need. In h = 2 dimensions, we easily extract a large set of vectors in general
position from this set by tossing out multiples of vectors, including the zero vector and
negative multiples. This is essentially the “rounded version” of the Farey construction
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for R2 that we described earlier, provided we take ∼ n/2 vectors in the first quadrant
and then add as many vectors in the second quadrant by changing the sign of the
first coordinates. Unfortunately, in h > 2 dimensions, it is not enough to take the
second Halász construction and just toss out multiples of vectors, since we generally
still have collections of three vectors that are dependent. So it is not yet clear how
to obtain a collection of vectors in general position that achieves the upper bound in
Theorem 11.2.

What if instead of requiring any h of the vectors to be a basis, we only require
that any l of them be independent, for some l < h? Can we do any better than the
general position problem in Rl? The answer is no.

Theorem 11.4. For all n, h ≥ l ≥ 1, the maximum number of subset sums equal to
the same target vector, over all sets of n vectors in Rh, any l of which are independent,
and over all targets t ∈ Rh, is fl(n) = ql(n).

Proof. There is nothing to prove unless h > l. Let a1, . . . , an ∈ Rh and target t ∈ Rh

achieve the stated maximum. Select any vector v such that

v /∈ ∪i1<···<il〈ai1 , . . . , ail〉.
Then project the vectors ai and the target t onto the hyperplane

Hv = {w ∈ Rh : (w, v) = 0}.
At least as many subset sums equal the projection of the target as equalled the target
originally, and any l of the projections of the ai’s are independent. So we have reduced
the dimension to h− 1. We can repeatedly project down until dimension l is reached,
where the maximum is fl(n).

Section 12. Future Study

A construction that achieves the bound in Theorem 11.2 for general h would be
especially nice to see. Perhaps the general position condition, which is forced on us
by the original internal security problem, causes fh(n) to be of lower order than the
bound in Theorem 11.2? Continuing studies are needed to resolve this issue.

We would like to see the Two-Dimensional Conjecture proved; we wonder which
construction is asymptotically optimal. The analogue of this conjecture for higher
dimensions would then be worthy of consideration.

We are anxious to see progress made on questions motivated by the group security
model in Section 8. There may be other pertinent new models for the database security
problem worth investigating.

Finally, we point out that Halász’s proofs employ sophisticated analytical ar-
guments involving measure theory, Fourier transforms, and inequalities of Schwartz,
Esséen, and Wiener. It would be nice to derive by more elementary methods the upper
bound in Theorem 11.2, or at least Corollary 11.3 (in two dimensions), in order to
have an accessible, self-contained proof.
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