Some Recent Results about Cross Intersecting Families

Norihide Tokushige
Ryukyu University
June 17, 2014
This talk is based on joint work with

Peter Frankl, Sang June Lee, Mark Siggers, Sho Suda, and Hajime Tanaka.
1. Set up and Weighed Erdős–Ko–Rado
\[[n] := \{1, 2, \ldots, n\}, \quad p \in (0, 1). \]

A family of subsets \(\mathcal{A} \subset 2^{[n]} \).

\(\mathcal{A} \) is \(t \)-intersecting if \(|A \cap A'| \geq t\) for all \(A, A' \in \mathcal{A} \).
• \([n] := \{1, 2, \ldots, n\}, \quad p \in (0, 1)\).

• A family of subsets \(\mathcal{A} \subset 2^n\).

• \(\mathcal{A}\) is \(t\)-intersecting if \(|A \cap A'| \geq t\) for all \(A, A' \in \mathcal{A}\).

• The \(p\)-weight (or product measure) of \(\mathcal{A}\) is

\[
\mu_p(\mathcal{A}) := \sum_{A \in \mathcal{A}} p^{|A|}(1 - p)^{n - |A|}.
\]

• Ex. \(\mathcal{F}_0 := \{A \subset [n]: [t] \subset A\}\) is a \(t\)-intersecting family with \(\mu_p(\mathcal{F}_0) = p^t\).
Another example of t-intersecting family:

$$\mathcal{F}_1 := \{F \subset [n] : |F \cap [t + 2]| \geq t + 1\}.$$

It follows that

$$\mu_p(\mathcal{F}_1) = (t + 2)p^{t+1}q + p^{t+2}$$

and

$$\mu_p(\mathcal{F}_0) \geq \mu_p(\mathcal{F}_1) \text{ iff } p \leq \frac{1}{t + 1}.$$
For $i \geq 0$ the following family is also t-int:

$$\mathcal{F}_i := \{ F \subset [n] : |F \cap [t + 2i]| \geq t + i \}.$$
For $i \geq 0$ the following family is also t-int:

$$\mathcal{F}_i := \{ F \subseteq [n] : |F \cap [t + 2i]| \geq t + i \}.$$

- $\mu_p(\mathcal{F}_i) \geq \mu_p(\mathcal{F}_{i+1})$ iff $p \leq \frac{i+1}{t+2i+1}$.

Theorem (Ahlsweide–Khachatrian, Bey–Engel, Dinur–Safra, T)

Let $\mathcal{A} \subseteq 2^{[n]}$ be t-intersecting. Then

$$\mu_p(\mathcal{A}) \leq \max_i \mu_p(\mathcal{F}_i).$$
Corollary

Let $\mathcal{A} \subset 2^{[n]}$ be t-intersecting.

1. If $p \leq \frac{1}{t+1}$ then
 \[\mu_p(\mathcal{A}) \leq \mu_p(\mathcal{F}_0) = p^t. \]

2. If $\frac{1}{t+1} \leq p \leq \frac{2}{t+3}$ then
 \[\mu_p(\mathcal{A}) \leq \mu_p(\mathcal{F}_1). \]
2. Extension to cross intersecting families
• Let $\mathcal{A}, \mathcal{B} \subset 2^{[n]}$.

• \mathcal{A} and \mathcal{B} are cross t-intersecting if $|A \cap B| \geq t$ for all $A \in \mathcal{A}, B \in \mathcal{B}$.
Let $\mathcal{A}, \mathcal{B} \subset 2^{[n]}$.

\mathcal{A} and \mathcal{B} are **cross** t-intersecting if $|A \cap B| \geq t$ for all $A \in \mathcal{A}, B \in \mathcal{B}$.

Theorem (Frankl–Lee–Siggers–T)

Let $\mathcal{A}, \mathcal{B} \subset 2^{[n]}$ be cross t-intersecting.

1. If $t \geq 14$ and $p \leq \frac{1}{t+1}$ then (arXiv 1303.0657)
 $$\mu_p(\mathcal{A}) \mu_p(\mathcal{B}) \leq (\mu_p(\mathcal{F}_0))^2 = p^{2t}.$$

2. If $t \geq 52$ and $\frac{1}{t+1} \leq p \leq \frac{2}{t+3}$ then
 $$\mu_p(\mathcal{A}) \mu_p(\mathcal{B}) \leq (\mu_p(\mathcal{F}_1))^2.$$
Some ideas in the proof

- Let \mathcal{A} and \mathcal{B} be cross t-intersecting.
- Assign a walk in \mathbb{Z}^2 to each $A \in \mathcal{A}$:

 \begin{align*}
 n &= 6,
 A &= \{2, 5\} \iff
 \end{align*}
Some ideas in the proof

- Let \mathcal{A} and \mathcal{B} be cross t-intersecting.
- Assign a walk in \mathbb{Z}^2 to each $A \in \mathcal{A}$:

 \[n = 6, \; A = \{2, 5\} \iff \]

- We may assume that \mathcal{A}, \mathcal{B} are shifted.
- **Key fact:** there are a, b such that
 1. all walks in \mathcal{A} hit $y = x + a$,
 2. all walks in \mathcal{B} hit $y = x + b$,
 3. $a + b \geq 2t$.
Some ideas in the proof (continued)

- Consider the infinite random walk on \mathbb{Z}^2 where i-th step is “↑” with probability p, and “→” with probability $1 - p$.

- $\mu_p(\mathcal{A})$ is bounded as follows:

\[
\mu_p(\mathcal{A}) \leq \Pr \left(\text{the random walk hits } y = x + a \right) = \left(\frac{p}{1 - p} \right)^a.
\]
3. Different measures and algebraic approach
Let G be a bi-regular bipartite graph with $V(G) = V_1 \cup V_2$.

$U_1 \subset V_1$ and $U_2 \subset V_2$ are cross independent if $uv \notin E(G)$ for all $u \in V_1$, $v \in V_2$.

For $i = 1, 2$ let $\tilde{\mu}_i$ be a general measure:

$$\tilde{\mu}_i : V_i \rightarrow [0, 1] \quad \text{and} \quad \sum_{v \in V_i} \tilde{\mu}_i(v) = 1.$$
Let G be a bi-regular bipartite graph with $V(G) = V_1 \cup V_2$.

$U_1 \subset V_1$ and $U_2 \subset V_2$ are cross independent if $uv \notin E(G)$ for all $u \in V_1$, $v \in V_2$.

For $i = 1, 2$ let $\tilde{\mu}_i$ be a general measure:

$$\tilde{\mu}_i : V_i \to [0, 1] \text{ and } \sum_{v \in V_i} \tilde{\mu}_i(v) = 1.$$

(Key fact): Let $\sigma_1 \geq \sigma_2 \geq \cdots$ be singular values of a bip. adjacency matrix of G. Then

$$\sqrt{\tilde{\mu}_1(U_1)\tilde{\mu}_2(U_2)} \leq \frac{\sigma_2}{\sigma_1 + \sigma_2}.$$
Recall $\mu_p(\mathcal{A}) := \sum_{A \in \mathcal{A}} p^{|A|} (1 - p)^{n-|A|}$.

Let $p_1, p_2 \in (0, 1)$ and let $q_i := 1 - p_i \ (i = 1, 2)$.
Recall $\mu_p(\mathcal{A}) := \sum_{A \in \mathcal{A}} p^{|A|} (1 - p)^{n - |A|}$.

Let $p_1, p_2 \in (0, 1)$ and let $q_i := 1 - p_i$ ($i = 1, 2$).

Theorem

If \((p_1 p_2) / (q_1 q_2) < \left(\sqrt{2} - 1 \right)^2 \cdots \cdots (\ast) \), and $\mathcal{A}, \mathcal{B} \subset 2^n$ are cross t-intersecting, then

$$\sqrt{\mu_{p_1}(\mathcal{A}) \mu_{p_2}(\mathcal{B})} \leq \left(\frac{\sqrt{p_1 p_2}}{\sqrt{p_1 p_2} + \sqrt{q_1 q_2}} \right)^t.$$

If $p_1 = p_2$, then the bound is sharp.

If $p_1, p_2 < \frac{\log 2}{t+1} < \frac{1}{t+1}$, then (\ast) is satisfied.
For the case $t = 1$ we get the exact bound:

Theorem (Suda–Tanaka–T)

Let $p_1, p_2 \in (0, 1/2]$. \hspace{1cm} \left(\frac{1}{2} = \frac{1}{t+1} \right)

If $A, B \subset 2^n$ are cross 1-intersecting, then

$$\mu_{p_1}(A)\mu_{p_2}(B) \leq p_1p_2.$$

The proof is done by solving a corresponding SDP problem. In fact we got a refined bipartite ratio bound based on SDP.
Our setup

Let G be a bi-regular bipartite graph with $V(G) = V_1 \cup V_2$ and $\tilde{\mu}_i : V_i \rightarrow [0, 1]$ ($i = 1, 2$). Let A be a bipartite adjacency matrix of G. Suppose $U_1 \subset V_1$ and $U_2 \subset V_2$ are cross indep.

Easy ratio bound (reprise)

Let $\sigma_1 \geq \sigma_2 \geq \cdots$ be the singular values of A. Then

$$\sqrt{\tilde{\mu}_1(U_1)\tilde{\mu}_2(U_2)} \leq \frac{\sigma_2}{\sigma_1 + \sigma_2}.$$
New ratio bound (idea)

If A has singular values $\sqrt{\alpha_1 \beta_1} \geq \sqrt{\alpha_2 \beta_2} \geq \cdots$ with some extra properties, then

$$\tilde{\mu}_1(U_1)\tilde{\mu}_2(U_2) \leq \frac{\alpha_1}{\alpha_1 + \alpha_2} \frac{\beta_1}{\beta_1 + \beta_2}.$$
New ratio bound (still oversimplified)

If there are nonsingular matrices P_1, P_2 and a nonnegative symmetric matrix A_1 such that

- $P_1^T A P_2 = \bigoplus (-1)^s \sqrt{\alpha_s \beta_s} I_{m_s}$,
- $P_1^T A_1 P_1 = \bigoplus (-1)^s \alpha_s I_{m_s}$,
- α_s and β_s satisfy some inequalities.

Then

$$\tilde{\mu}_1(U_1) \tilde{\mu}_2(U_2) \leq \frac{\alpha_1}{\alpha_1 + \alpha_2} \frac{\beta_1}{\beta_1 + \beta_2}.$$
This new ratio bound can be applied to the following type of cross 1-intersecting EKR:

- weighted subsets ($p_{i} \leq 1/2$)

 $$\mu_{p_{1}}(\mathcal{A})\mu_{p_{2}}(\mathcal{B}) \leq p_{1}p_{2},$$

- uniform subsets ($n \geq 2k_{i}$)

 $$|\mathcal{A}||\mathcal{B}| \leq \binom{n-1}{k_{1}-1}\binom{n-1}{k_{2}-1},$$

- subspaces ($n \geq 2k_{i}$) (Suda–Tanaka 2013)

 $$|\mathcal{A}||\mathcal{B}| \leq \begin{bmatrix} n-1 \\ k_{1}-1 \end{bmatrix} \begin{bmatrix} n-1 \\ k_{2}-1 \end{bmatrix}.$$
Conjectures

Conjecture 1

Let $p_1, p_2 \leq \frac{1}{t+1}$. If $\mathcal{A}, \mathcal{B} \subset 2^{[n]}$ are cross t-intersecting, then

$$\mu_{p_1}(\mathcal{A}) \mu_{p_2}(\mathcal{B}) \leq (p_1p_2)^t.$$

True if

- $t = 1$,
- $t \geq 14$ and $p_1 = p_2$,
- $p_1 = p_2 \leq \frac{\log 2}{t+1}$.
\(A, B, C \subset 2^{[n]} \) are 3-cross intersecting if

\[
A \cap B \cap C \neq \emptyset
\]

for all \(A \in \mathcal{A}, B \in \mathcal{B}, C \in \mathcal{C} \).

Conjecture 2

Let \(\mathcal{A} \subset \binom{[n]}{k_1}, \mathcal{B} \subset \binom{[n]}{k_2}, \mathcal{C} \subset \binom{[n]}{k_3} \) be 3-cross intersecting, and \(2n \geq 3k_i \). Then

\[
|\mathcal{A}||\mathcal{B}||\mathcal{C}| \leq \binom{n-1}{k_1-1}\binom{n-1}{k_2-1}\binom{n-1}{k_3-1}.
\]

True if \(k_1 = k_2 = k_3 \).
Conjecture 2 would imply

Conjecture 3

Let $\mathcal{A}, \mathcal{B}, \mathcal{C} \subset 2^{[n]}$ be 3-cross intersecting, and $p_1, p_2, p_3 \leq 2/3$. Then

$$\mu_{p_1}(\mathcal{A})\mu_{p_2}(\mathcal{B})\mu_{p_3}(\mathcal{C}) \leq p_1p_2p_3.$$

Not known even if $p_1 = p_2 = p_3$.