Forbidden Structures in the Boolean Lattice

Kevin G. Milans (milans@math.wvu.edu) Joint with L. Lu and J. T. Johnston

West Virginia University

SIAM Conference on Discrete Mathematics Minneapolis, MN June 17, 2014

• $2^{[n]}$ is the *n*-dimensional Boolean lattice

- ▶ $2^{[n]}$ is the *n*-dimensional Boolean lattice
- Q is an extension of P if $x \leq_P y$ implies $x \leq_Q y$

- $2^{[n]}$ is the *n*-dimensional Boolean lattice
- Q is an extension of P if $x \leq_P y$ implies $x \leq_Q y$

- $2^{[n]}$ is the *n*-dimensional Boolean lattice
- Q is an extension of P if $x \leq_P y$ implies $x \leq_Q y$

- ▶ 2^[n] is the *n*-dimensional Boolean lattice
- Q is an extension of P if $x \leq_P y$ implies $x \leq_Q y$

• When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.

- When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.
- If \mathcal{F} does not contain a copy of P, then \mathcal{F} is P-free.

- When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.
- ► If F does not contain a copy of P, then F is P-free. If F does not contain an extension of P, then F is E(P)-free.

- When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.
- If \mathcal{F} does not contain a copy of P, then \mathcal{F} is P-free. If \mathcal{F}
- does not contain an extension of P, then \mathcal{F} is $\mathcal{E}(P)$ -free.

 $\operatorname{La}^*(n, P) = \max\{|\mathcal{F}|: \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } P \text{-free}\}$

- When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.
- If \mathcal{F} does not contain a copy of P, then \mathcal{F} is P-free. If \mathcal{F}
- does not contain an extension of P, then \mathcal{F} is $\mathcal{E}(P)$ -free.

$$\begin{aligned} \operatorname{La}^*(n,P) &= \max\{|\mathcal{F}|: \ \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } P\text{-free}\}\\ \operatorname{La}(n,P) &= \max\{|\mathcal{F}|: \ \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{E}(P)\text{-free}\}\end{aligned}$$

- When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.
- If \mathcal{F} does not contain a copy of P, then \mathcal{F} is P-free. If \mathcal{F}
- does not contain an extension of P, then \mathcal{F} is $\mathcal{E}(P)$ -free.

$$\begin{aligned} &\operatorname{La}^*(n,P) = \max\{|\mathcal{F}|: \ \mathcal{F} \subseteq 2^{[n]} \ \text{and} \ \mathcal{F} \ \text{is} \ P\text{-free}\} \\ &\operatorname{La}(n,P) = \max\{|\mathcal{F}|: \ \mathcal{F} \subseteq 2^{[n]} \ \text{and} \ \mathcal{F} \ \text{is} \ \mathcal{E}(P)\text{-free}\} \end{aligned}$$

• Clearly,
$$\operatorname{La}(n, P) \leq \operatorname{La}^*(n, P)$$
.

- When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.
- If \mathcal{F} does not contain a copy of P, then \mathcal{F} is P-free. If \mathcal{F}
- does not contain an extension of P, then \mathcal{F} is $\mathcal{E}(P)$ -free.

$$\begin{split} &\operatorname{La}^*(n,P) = \max\{|\mathcal{F}|: \ \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } P\text{-free}\} \\ &\operatorname{La}(n,P) = \max\{|\mathcal{F}|: \ \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{E}(P)\text{-free}\} \end{split}$$

- Clearly, $\operatorname{La}(n, P) \leq \operatorname{La}^*(n, P)$.
- Let K_r be the chain on r elements.

- When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.
- If \mathcal{F} does not contain a copy of P, then \mathcal{F} is P-free. If \mathcal{F}
- does not contain an extension of P, then \mathcal{F} is $\mathcal{E}(P)$ -free.

$$\begin{aligned} \mathrm{La}^*(n,P) &= \max\{|\mathcal{F}|: \ \mathcal{F} \subseteq 2^{[n]} \ \text{and} \ \mathcal{F} \ \text{is} \ P\text{-free}\} \\ \mathrm{La}(n,P) &= \max\{|\mathcal{F}|: \ \mathcal{F} \subseteq 2^{[n]} \ \text{and} \ \mathcal{F} \ \text{is} \ \mathcal{E}(P)\text{-free}\} \end{aligned}$$

- Clearly, $\operatorname{La}(n, P) \leq \operatorname{La}^*(n, P)$.
- Let K_r be the chain on r elements.

Theorem (Sperner (1928); Erdős (1945))

La* (n, K_r) equals the sum of the r-1 largest binomial coefficients in $\{\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}\}$. For fixed r and $n \to \infty$,

$$\operatorname{La}^{*}(n, K_{r}) = (r - 1 + o(1)) \binom{n}{\lfloor n/2 \rfloor}.$$

• If P has r elements, then K_r is an extension of P.

• If P has r elements, then K_r is an extension of P.

٠

▶ $La(n, P) \leq La(n, K_r)$

• If P has r elements, then K_r is an extension of P.

٠

► La
$$(n, P)$$
 ≤ La $(n, K_r) = (r - 1 + o(1)) \binom{n}{\lfloor n/2 \rfloor}$

• If P has r elements, then K_r is an extension of P.

► La
$$(n, P)$$
 ≤ La $(n, K_r) = (r - 1 + o(1)) \binom{n}{\lfloor n/2 \rfloor} = O(2^n/\sqrt{n}).$

- If P has r elements, then K_r is an extension of P.
- ► La(n, P) ≤ La(n, K_r) = $(r 1 + o(1)) \binom{n}{\lfloor n/2 \rfloor} = O(2^n / \sqrt{n}).$

• If P is not an antichain, then $La(n, P) = \Theta(2^n/\sqrt{n})$.

- If P has r elements, then K_r is an extension of P.
- ► La(n, P) ≤ La(n, K_r) = $(r 1 + o(1)) \binom{n}{\lfloor n/2 \rfloor} = O(2^n/\sqrt{n}).$
- If P is not an antichain, then $La(n, P) = \Theta(2^n/\sqrt{n})$.
- ▶ The challenge is to determine the *asymptotics* of La(*n*, *P*).

• If P has r elements, then K_r is an extension of P.

► La
$$(n, P)$$
 ≤ La $(n, K_r) = (r - 1 + o(1)) \binom{n}{\lfloor n/2 \rfloor} = O(2^n/\sqrt{n}).$

- If P is not an antichain, then $La(n, P) = \Theta(2^n/\sqrt{n})$.
- The challenge is to determine the *asymptotics* of La(n, P).

Question

For fixed P, how does $La^*(n, P)$ grow?

• If P has r elements, then K_r is an extension of P.

► La
$$(n, P)$$
 ≤ La $(n, K_r) = (r - 1 + o(1)) \binom{n}{\lfloor n/2 \rfloor} = O(2^n/\sqrt{n}).$

- If P is not an antichain, then $La(n, P) = \Theta(2^n/\sqrt{n})$.
- The challenge is to determine the *asymptotics* of La(n, P).

Question

For fixed *P*, how does $La^*(n, P)$ grow?

Main Conjecture For fixed P, we have $La^*(n, P) = O(2^n/\sqrt{n})$.

• The Turán threshold of *P*, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{\operatorname{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

• The Turán threshold of *P*, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{\operatorname{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

Main Conj: each poset has a finite Turán threshold.

• The Turán threshold of *P*, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{\operatorname{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

Main Conj: each poset has a finite Turán threshold.

Posets with finite Turán thresholds

▶ [Sperner (1928); Erdős (1945)] π*(K_r) = r − 1

• The Turán threshold of *P*, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{\operatorname{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

Main Conj: each poset has a finite Turán threshold.

- ► [Sperner (1928); Erdős (1945)] π^{*}(K_r) = r − 1
- [Carroll–Katona (2008)]: $\pi^*(v) = 1$.

• The Turán threshold of *P*, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{\operatorname{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

Main Conj: each poset has a finite Turán threshold.

- ► [Sperner (1928); Erdős (1945)] π*(K_r) = r − 1
- [Carroll–Katona (2008)]: $\pi^*(v) = 1$.
- [Boehnlein–Jiang (2011)]: If P is a tree poset of height h, then π*(P) = h − 1.

• The Turán threshold of *P*, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{\operatorname{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

Main Conj: each poset has a finite Turán threshold.

- ► [Sperner (1928); Erdős (1945)] π*(K_r) = r − 1
- [Carroll–Katona (2008)]: $\pi^*(\sim) = 1$.
- [Boehnlein–Jiang (2011)]: If P is a tree poset of height h, then π*(P) = h − 1.
- [Lu–Milans]: If P is series-parallel, then $\pi^*(P) = O(|P|)$.

• The Turán threshold of *P*, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{\operatorname{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

Main Conj: each poset has a finite Turán threshold.

- ▶ [Sperner (1928); Erdős (1945)] π*(K_r) = r − 1
- [Carroll–Katona (2008)]: $\pi^*(\sim) = 1$.
- [Boehnlein–Jiang (2011)]: If P is a tree poset of height h, then π*(P) = h − 1.
- [Lu–Milans]: If P is series-parallel, then $\pi^*(P) = O(|P|)$.
- [Lu–Milans]: If P has height 2, then $\pi^*(P) = O(|P|)$.

• The Turán threshold of *P*, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{\operatorname{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

Main Conj: each poset has a finite Turán threshold.

- ► [Sperner (1928); Erdős (1945)] π^{*}(K_r) = r − 1
- [Carroll–Katona (2008)]: $\pi^*(\checkmark) = 1$.
- [Boehnlein–Jiang (2011)]: If P is a tree poset of height h, then π*(P) = h − 1.
- [Lu–Milans]: If P is series-parallel, then $\pi^*(P) = O(|P|)$.
- [Lu–Milans]: If P has height 2, then $\pi^*(P) = O(|P|)$.

Given *F* ⊆ 2^[n], let *X* be the number of times a random full chain meets *F*.
 F(x) ∑¹

$$\blacktriangleright \mathbf{E}[X] = \sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}}$$

Given *F* ⊆ 2^[n], let *X* be the number of times a random full chain meets *F*.

$$\blacktriangleright \mathbf{E}[X] = \sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}}$$

► The Lubell function of *F*, denoted ℓ_n(*F*) or ℓ(*F*), is E[X].

$$\blacktriangleright \mathbf{E}[X] = \sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}}$$

- ► The Lubell function of *F*, denoted ℓ_n(*F*) or ℓ(*F*), is E[X].
- ► Think of l_n(F) as a measure of the size of F, with 0 ≤ l_n(F) ≤ n + 1.

$$\blacktriangleright \mathbf{E}[X] = \sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}}$$

- ► The Lubell function of *F*, denoted ℓ_n(*F*) or ℓ(*F*), is E[X].
- ► Think of l_n(F) as a measure of the size of F, with 0 ≤ l_n(F) ≤ n + 1.
- For A ⊆ B, we define ℓ(F; [A, B]) to be the expected number of times a random, full chain from A to B meets F.

The Lubell Threshold

• The Lubell threshold, denoted $\lambda^*(P)$, is

$$\lambda^*(P) = \sup\{\ell(\mathcal{F}): \mathcal{F} \text{ is } P \text{-free}\}.$$

The Lubell Threshold

• The Lubell threshold, denoted $\lambda^*(P)$, is

$$\lambda^*(P) = \sup\{\ell(\mathcal{F}): \mathcal{F} \text{ is } P \text{-free}\}.$$

• Since
$$\ell(\mathcal{F}) = \sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}} \ge \frac{|\mathcal{F}|}{\binom{n}{\lfloor n/2 \rfloor}}$$
, we have $\lambda^*(P) \ge \pi^*(P)$.

The Lubell Threshold

• The Lubell threshold, denoted $\lambda^*(P)$, is

$$\lambda^*(P) = \sup\{\ell(\mathcal{F}): \mathcal{F} \text{ is } P \text{-free}\}.$$

• Since
$$\ell(\mathcal{F}) = \sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}} \ge \frac{|\mathcal{F}|}{\binom{n}{\lfloor n/2 \rfloor}}$$
, we have $\lambda^*(P) \ge \pi^*(P)$.

Conjecture Always $\lambda^*(P)$ is finite.

Theorem

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

Theorem

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

Proof (sketch).

Theorem

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

Proof (sketch). Let $F_0 \subseteq 2^{[n]}$ with $\ell(\mathcal{F}_0) \ge 2r + \Theta(\sqrt{r})$.

1. Let $\mathcal{F}_1 = \{A \in \mathcal{F}_0 : |A| \le n/2\}$. By self-duality, we may assume $\ell(\mathcal{F}_1) \ge \frac{1}{2}\ell(\mathcal{F}_0) \ge r + \Theta(\sqrt{r})$.

Theorem

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

Proof (sketch). Let $F_0 \subseteq 2^{[n]}$ with $\ell(\mathcal{F}_0) \ge 2r + \Theta(\sqrt{r})$.

- 1. Let $\mathcal{F}_1 = \{A \in \mathcal{F}_0 : |A| \le n/2\}$. By self-duality, we may assume $\ell(\mathcal{F}_1) \ge \frac{1}{2}\ell(\mathcal{F}_0) \ge r + \Theta(\sqrt{r})$.
- 2. When $t \in A \in \mathcal{F}$, we say that t is a pivot of A if

Theorem

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

Proof (sketch). Let $F_0 \subseteq 2^{[n]}$ with $\ell(\mathcal{F}_0) \ge 2r + \Theta(\sqrt{r})$.

- 1. Let $\mathcal{F}_1 = \{A \in \mathcal{F}_0 : |A| \le n/2\}$. By self-duality, we may assume $\ell(\mathcal{F}_1) \ge \frac{1}{2}\ell(\mathcal{F}_0) \ge r + \Theta(\sqrt{r})$.
- 2. When $t \in A \in \mathcal{F}$, we say that t is a pivot of A if there exists an element $t' \notin A$ such that $A - \{t\} + \{t'\} \in \mathcal{F}$.

Theorem

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

Proof (sketch). Let $F_0 \subseteq 2^{[n]}$ with $\ell(\mathcal{F}_0) \ge 2r + \Theta(\sqrt{r})$.

- 1. Let $\mathcal{F}_1 = \{A \in \mathcal{F}_0 : |A| \le n/2\}$. By self-duality, we may assume $\ell(\mathcal{F}_1) \ge \frac{1}{2}\ell(\mathcal{F}_0) \ge r + \Theta(\sqrt{r})$.
- 2. When $t \in A \in \mathcal{F}$, we say that t is a pivot of A if there exists an element $t' \notin A$ such that $A - \{t\} + \{t'\} \in \mathcal{F}$.

A set $A \in \mathcal{F}$ is γ -flexible if it has at least $\gamma|A|$ pivots.

Theorem

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

Proof (sketch).

3. Form \mathcal{F}_2 from \mathcal{F}_1 by throwing away all sets that are not $(1 - \frac{1}{\sqrt{r}})$ -flexible. We have $\ell(\mathcal{F}_2) \ge \ell(\mathcal{F}_1) - O(\sqrt{r})$.

Theorem

$$r-2 \leq \lambda^{2}$$

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

Proof (sketch).

- 3. Form \mathcal{F}_2 from \mathcal{F}_1 by throwing away all sets that are not $(1 \frac{1}{\sqrt{r}})$ -flexible. We have $\ell(\mathcal{F}_2) \ge \ell(\mathcal{F}_1) O(\sqrt{r})$.
- 4. Pick a set $B \in \mathcal{F}_2$ with $\ell(\mathcal{F}_2; [\emptyset, B]) \ge \ell(\mathcal{F}_2)$.

Theorem

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r+$$

Proof (sketch).

- 3. Form \mathcal{F}_2 from \mathcal{F}_1 by throwing away all sets that are not $(1 \frac{1}{\sqrt{r}})$ -flexible. We have $\ell(\mathcal{F}_2) \ge \ell(\mathcal{F}_1) O(\sqrt{r})$.
- 4. Pick a set $B \in \mathcal{F}_2$ with $\ell(\mathcal{F}_2; [\emptyset, B]) \ge \ell(\mathcal{F}_2)$.

 $O(\sqrt{r})$

Let T be the set of pivots in B.

Theorem

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

Proof (sketch).

- 3. Form \mathcal{F}_2 from \mathcal{F}_1 by throwing away all sets that are not $(1 \frac{1}{\sqrt{r}})$ -flexible. We have $\ell(\mathcal{F}_2) \ge \ell(\mathcal{F}_1) O(\sqrt{r})$.
- 4. Pick a set $B \in \mathcal{F}_2$ with $\ell(\mathcal{F}_2; [\emptyset, B]) \ge \ell(\mathcal{F}_2)$.

Let T be the set of pivots in B. Note that $|T| \ge \gamma |B|$.

Theorem

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

Proof (sketch).

5. Since $\ell(\mathcal{F}_2; [\emptyset, B])$ is large and $|T| \ge \gamma |B|$, we find sets $A_1, \ldots, A_r \in \mathcal{F}_2$ and elements $t_1, \ldots, t_r \in T$ such that

Theorem

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

Proof (sketch).

5. Since $\ell(\mathcal{F}_2; [\varnothing, B])$ is large and $|T| \ge \gamma |B|$, we find sets $A_1, \ldots, A_r \in \mathcal{F}_2$ and elements $t_1, \ldots, t_r \in T$ such that (a) $A_i \subseteq B$

Theorem

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

Proof (sketch).

5. Since ℓ(𝔅₂; [𝔅, 𝔅]) is large and |𝔅𝔅| ≥ γ|𝔅|, we find sets 𝑋₁,...,𝔅_r ∈ 𝔅₂ and elements 𝑘₁,...,𝑘_r ∈ 𝔅 such that
(a) 𝔅_i ⊆ 𝔅
(b) 𝑘_i ∈ 𝔅_j if and only if 𝔅 = 𝔅.

Theorem

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

Proof (sketch).

6. Since $t_i \in T$, we can pivot *B* away from t_i to obtain $B_i \in \mathcal{F}_2$.

Theorem

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

Proof (sketch).

6. Since $t_i \in T$, we can pivot B away from t_i to obtain $B_i \in \mathcal{F}_2$. 7. $t_i \in A_i$ but $t_i \notin B_i$, so $A_i \nsubseteq B_i$.

Theorem

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

Proof (sketch).

6. Since t_i ∈ T, we can pivot B away from t_i to obtain B_i ∈ F₂.
 7. t_i ∈ A_i but t_i ∉ B_i, so A_i ⊈ B_i.
 8. If j ≠ i, then A_j ⊆ B - {t_i} ⊆ B_i.

Theorem

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

Proof (sketch).

6. Since t_i ∈ T, we can pivot B away from t_i to obtain B_i ∈ F₂.
 7. t_i ∈ A_i but t_i ∉ B_i, so A_i ⊈ B_i.
 8. If j ≠ i, then A_j ⊆ B - {t_i} ⊆ B_i.
 9. A₁,..., A_r and B₁,..., B_r form a copy of S_r.

Definition

The generalized standard example of width r and height h, denoted $S_{r,h}$, has h disjoint r-antichains A_1, \ldots, A_h where $A_i \cup A_{i+1}$ is a copy of S_r .

Definition

The generalized standard example of width r and height h, denoted $S_{r,h}$, has h disjoint r-antichains A_1, \ldots, A_h where $A_i \cup A_{i+1}$ is a copy of S_r .

Theorem $\pi^*(S_{r,3}) = O(r).$

Definition

The generalized standard example of width r and height h, denoted $S_{r,h}$, has h disjoint r-antichains A_1, \ldots, A_h where $A_i \cup A_{i+1}$ is a copy of S_r .

Theorem

$$\pi^*(\mathcal{S}_{r,3})=O(r).$$

Proof involves about 10 cleaning steps.

Definition

The generalized standard example of width r and height h, denoted $S_{r,h}$, has h disjoint r-antichains A_1, \ldots, A_h where $A_i \cup A_{i+1}$ is a copy of S_r .

Theorem

 $\pi^*(\mathcal{S}_{r,3}) = O(r).$

- Proof involves about 10 cleaning steps.
- Not clear how to extend to other posets of height 3 or $S_{r,h}$.

• Each poset is contained in a Boolean lattice.

- Each poset is contained in a Boolean lattice.
- To establish the conjecture, it suffices to show that each Boolean lattice has a finite Lubell threshold.

- Each poset is contained in a Boolean lattice.
- To establish the conjecture, it suffices to show that each Boolean lattice has a finite Lubell threshold.

•
$$\lambda^*(2^{[3]}) \le 2 + \lambda^*(\mathcal{S}_3) \le 24.$$

- Each poset is contained in a Boolean lattice.
- To establish the conjecture, it suffices to show that each Boolean lattice has a finite Lubell threshold.

•
$$\lambda^*(2^{[3]}) \le 2 + \lambda^*(\mathcal{S}_3) \le 24.$$

▶ Open problem: show that $\lambda^*(2^{[4]})$ or $\pi^*(2^{[4]})$ is finite.

Several inductive approaches to forcing 2^[r] stitch together two copies of 2^[r-1].

- Several inductive approaches to forcing 2^[r] stitch together two copies of 2^[r-1].
- In many cases, the resulting copy of 2^[r] would be highly structured.

- Several inductive approaches to forcing 2^[r] stitch together two copies of 2^[r-1].
- In many cases, the resulting copy of 2^[r] would be highly structured.

Definition

• Given disjoint sets X_0, X_1, \ldots, X_d , with $X_i \neq \emptyset$ for $i \ge 1$,

- Several inductive approaches to forcing 2^[r] stitch together two copies of 2^[r-1].
- In many cases, the resulting copy of 2^[r] would be highly structured.

Definition

► Given disjoint sets X₀, X₁,..., X_d, with X_i ≠ Ø for i ≥ 1, the generated d-dimensional Boolean algebra is the family of all sets formed by the union of X₀ with 0 or more members of {X₁,...,X_d}.

- Several inductive approaches to forcing 2^[r] stitch together two copies of 2^[r-1].
- In many cases, the resulting copy of 2^[r] would be highly structured.

Definition

- ► Given disjoint sets X₀, X₁,..., X_d, with X_i ≠ Ø for i ≥ 1, the generated d-dimensional Boolean algebra is the family of all sets formed by the union of X₀ with 0 or more members of {X₁,...,X_d}.
- Such a family of 2^d sets forms a copy of \mathcal{B}_d .

- Several inductive approaches to forcing 2^[r] stitch together two copies of 2^[r-1].
- In many cases, the resulting copy of 2^[r] would be highly structured.

Definition

- ► Given disjoint sets X₀, X₁,..., X_d, with X_i ≠ Ø for i ≥ 1, the generated d-dimensional Boolean algebra is the family of all sets formed by the union of X₀ with 0 or more members of {X₁,..., X_d}.
- Such a family of 2^d sets forms a copy of \mathcal{B}_d .
- A family is \mathcal{B}_d -free if it does not contain a copy of \mathcal{B}_d .

- Several inductive approaches to forcing 2^[r] stitch together two copies of 2^[r-1].
- In many cases, the resulting copy of 2^[r] would be highly structured.

Definition

- ► Given disjoint sets X₀, X₁,..., X_d, with X_i ≠ Ø for i ≥ 1, the generated d-dimensional Boolean algebra is the family of all sets formed by the union of X₀ with 0 or more members of {X₁,..., X_d}.
- Such a family of 2^d sets forms a copy of \mathcal{B}_d .
- A family is \mathcal{B}_d -free if it does not contain a copy of \mathcal{B}_d .

Fact

There exists $\mathcal{F} \subseteq 2^{[n]}$ such that \mathcal{F} is \mathcal{B}_2 -free and $|\mathcal{F}| \ge \Omega(n^{\frac{1}{4}} \cdot \frac{2^n}{\sqrt{n}})$.

• What is the largest size of a \mathcal{B}_d -free subfamily of $2^{[n]}$?

- ▶ What is the largest size of a B_d-free subfamily of 2^[n]?
- Let $b(n,d) = \max \{ |\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{B}_d\text{-free} \}.$

- ▶ What is the largest size of a B_d-free subfamily of 2^[n]?
- Let $b(n,d) = \max \{ |\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{B}_d\text{-free} \}.$

Prior Work

► [Sperner]
$$b(n,1) = \binom{n}{\lfloor n/2 \rfloor} \sim \sqrt{2/\pi} \cdot n^{-1/2} \cdot 2^n$$

- What is the largest size of a B_d-free subfamily of 2^[n]?
- Let $b(n,d) = \max \{ |\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{B}_d\text{-free} \}.$

Prior Work

- ► [Sperner] $b(n,1) = \binom{n}{\lfloor n/2 \rfloor} \sim \sqrt{2/\pi} \cdot n^{-1/2} \cdot 2^n$
- ► [Erdős–Kleitman 1971] For some constants c₁, c₂ and n sufficiently large

$$c_1 \cdot n^{-1/4} \cdot 2^n \leq b(n,2) \leq c_2 \cdot n^{-1/4} \cdot 2^n.$$

- ▶ What is the largest size of a B_d-free subfamily of 2^[n]?
- Let $b(n,d) = \max \{ |\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{B}_d\text{-free} \}.$

Prior Work

 [Gunderson-Rödl-Sidorenko 1999] For each d, there exists c_d such that for n sufficiently large

$$n^{-rac{d}{2^{d+1}-2}(1-o(1))}\cdot 2^n\leq b(n,d)\leq c_d\cdot n^{-rac{1}{2^d}}\cdot 2^n.$$

- What is the largest size of a B_d-free subfamily of 2^[n]?
- Let $b(n,d) = \max \{ |\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{B}_d\text{-free} \}.$

Prior Work

 [Gunderson-Rödl-Sidorenko 1999] For each d, there exists c_d such that for n sufficiently large

$$n^{-rac{d}{2^{d+1}-2}(1-o(1))} \cdot 2^n \leq b(n,d) \leq c_d \cdot n^{-rac{1}{2^d}} \cdot 2^n.$$

• Here, $c_d = (10d)^d (1 + o(1))$.

- What is the largest size of a B_d-free subfamily of 2^[n]?
- Let $b(n,d) = \max \{ |\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{B}_d\text{-free} \}.$

Prior Work

 [Gunderson-Rödl-Sidorenko 1999] For each d, there exists c_d such that for n sufficiently large

$$n^{-rac{d}{2^{d+1}-2}(1-o(1))} \cdot 2^n \leq b(n,d) \leq c_d \cdot n^{-rac{1}{2^d}} \cdot 2^n.$$

• Here,
$$c_d = (10d)^d (1 + o(1)).$$

Theorem

$$b(n,d) \leq 50 \cdot n^{-\frac{1}{2^d}} \cdot 2^n.$$

Summary & Open Problems

Theorems

.

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

If P has height 2, then $\lambda^*(P) \leq O(|P|)$.

 $\lambda^*(\mathcal{S}_{r,3}) \leq O(r)$

Summary & Open Problems

Theorems

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

If P has height 2, then $\lambda^*(P) \leq O(|P|)$.

 $\lambda^*(\mathcal{S}_{r,3}) \leq O(r)$

Problems

- Conjecture: Always $\lambda^*(P)$ is finite.
- Show that $\lambda^*(P)$ is finite when P has height 3.
- Find a bound λ*(2^[4]).

Summary & Open Problems

Theorems

$$r-2 \leq \lambda^*(\mathcal{S}_r) \leq 2r + O(\sqrt{r})$$

If P has height 2, then $\lambda^*(P) \leq O(|P|)$.

 $\lambda^*(\mathcal{S}_{r,3}) \leq O(r)$

Problems

- Conjecture: Always $\lambda^*(P)$ is finite.
- Show that $\lambda^*(P)$ is finite when P has height 3.
- Find a bound λ*(2^[4]).

Thank You.