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The Turán Problem

I When F ⊆ 2[n], we view F as a poset ordered by inclusion.

I If F does not contain a copy of P, then F is P-free.

If F
does not contain an extension of P, then F is E(P)-free.

I

La∗(n,P) = max{|F| : F ⊆ 2[n] and F is P-free}

La(n,P) = max{|F| : F ⊆ 2[n] and F is E(P)-free}

I Clearly, La(n,P) ≤ La∗(n,P).

I Let Kr be the chain on r elements.

Theorem (Sperner (1928); Erdős (1945))

La∗(n,Kr ) equals the sum of the r − 1 largest binomial coefficients
in {

(n
0

)
,
(n
1

)
, . . . ,

(n
n

)
}. For fixed r and n→∞,

La∗(n,Kr ) = (r − 1 + o(1))

(
n

bn/2c

)
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Growth of La(n,P) vs. La∗(n,P)

I If P has r elements, then Kr is an extension of P.

I La(n,P) ≤ La(n,Kr )

= (r − 1 + o(1))
( n
bn/2c

)
= O(2n/

√
n)

.

I If P is not an antichain, then La(n,P) = Θ(2n/
√

n).

I The challenge is to determine the asymptotics of La(n,P).

Question
For fixed P, how does La∗(n,P) grow?

Main Conjecture

For fixed P, we have La∗(n,P) = O(2n/
√

n).
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The Turán Threshold

I The Turán threshold of P, denoted π∗(P), is given by

π∗(P) = lim sup
n→∞

La∗(n,P)( n
bn/2c

) .

I Main Conj: each poset has a finite Turán threshold.

Posets with finite Turán thresholds

I [Sperner (1928); Erdős (1945)] π∗(Kr ) = r − 1

I [Carroll–Katona (2008)]: π∗( ) = 1.

I [Boehnlein–Jiang (2011)]: If P is a tree poset of height h,
then π∗(P) = h − 1.

I [Lu–Milans]: If P is series-parallel, then π∗(P) = O(|P|).

I [Lu–Milans]: If P has height 2, then π∗(P) = O(|P|).

I Cor: π∗(2[3]) ≤ 24.
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I [Sperner (1928); Erdős (1945)] π∗(Kr ) = r − 1

I [Carroll–Katona (2008)]: π∗( ) = 1.

I [Boehnlein–Jiang (2011)]: If P is a tree poset of height h,
then π∗(P) = h − 1.

I [Lu–Milans]: If P is series-parallel, then π∗(P) = O(|P|).

I [Lu–Milans]: If P has height 2, then π∗(P) = O(|P|).

I Cor: π∗(2[3]) ≤ 24.



The Turán Threshold

I The Turán threshold of P, denoted π∗(P), is given by

π∗(P) = lim sup
n→∞

La∗(n,P)( n
bn/2c

) .

I Main Conj: each poset has a finite Turán threshold.

Posets with finite Turán thresholds
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The Lubell Function

∅

[n]
I Given F ⊆ 2[n], let X be the

number of times a random full
chain meets F .

I E[X ] =
∑
A∈F

1( n
|A|
)

I The Lubell function of F , denoted
`n(F) or `(F), is E[X ].

I Think of `n(F) as a measure of the
size of F , with 0 ≤ `n(F) ≤ n + 1.

I For A ⊆ B, we define `(F ; [A,B])
to be the expected number of
times a random, full chain from A
to B meets F .
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A natural attack

I Each poset is contained in a Boolean lattice.

I To establish the conjecture, it suffices to show that each
Boolean lattice has a finite Lubell threshold.

I λ∗(2[3]) ≤ 2 + λ∗(S3) ≤ 24.

I Open problem: show that λ∗(2[4]) or π∗(2[4]) is finite.
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A natural attack

I Several inductive approaches to forcing 2[r ] stitch together
two copies of 2[r−1].

I In many cases, the resulting copy of 2[r ] would be highly
structured.

Definition

I Given disjoint sets X0,X1, . . . ,Xd , with Xi 6= ∅ for i ≥ 1,

the
generated d-dimensional Boolean algebra is the family of all
sets formed by the union of X0 with 0 or more members of
{X1, . . . ,Xd}.

I Such a family of 2d sets forms a copy of Bd .

I A family is Bd -free if it does not contain a copy of Bd .

Fact
There exists F ⊆ 2[n] such that F is B2-free and |F| ≥ Ω(n

1
4 · 2n√

n
).
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The Turán Problem for Boolean Algebras

I What is the largest size of a Bd -free subfamily of 2[n]?

I Let b(n, d) = max
{
|F| : F ⊆ 2[n] and F is Bd -free

}
.

Prior Work

Theorem

b(n, d) ≤ 50 · n−
1

2d · 2n.
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(1−o(1)) · 2n ≤ b(n, d) ≤ cd · n−

1

2d · 2n.

I Here, cd = (10d)d(1 + o(1)).

Theorem

b(n, d) ≤ 50 · n−
1

2d · 2n.



Summary & Open Problems

Theorems

r − 2 ≤ λ∗(Sr ) ≤ 2r + O(
√

r)

If P has height 2, then λ∗(P) ≤ O(|P|).

λ∗(Sr ,3) ≤ O(r)

Problems

I Conjecture: Always λ∗(P) is finite.

I Show that λ∗(P) is finite when P has height 3.

I Find a bound λ∗(2[4]).

Thank You.
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