Forbidden Structures in the Boolean Lattice

Kevin G. Milans (milans@math.wvu.edu)
Joint with L. Lu and J. T. Johnston

West Virginia University

SIAM Conference on Discrete Mathematics
Minneapolis, MN
June 17, 2014
Extensions and Copies

- 2^n is the n-dimensional Boolean lattice
Extensions and Copies

- 2^n is the n-dimensional Boolean lattice
- Q is an extension of P if $x \leq_P y$ implies $x \leq_Q y$
Extensions and Copies

- $2^{[n]}$ is the n-dimensional Boolean lattice
- Q is an extension of P if $x \leq_P y$ implies $x \leq_Q y$

![Diagram of a lattice with nodes labeled a, b, c, d, and edge connections]

P
Extensions and Copies

- $2^{[n]}$ is the n-dimensional Boolean lattice
- Q is an extension of P if $x \leq_P y$ implies $x \leq_Q y$

An extension of P in $2^{[3]}$
Extensions and Copies

- 2^n is the n-dimensional Boolean lattice
- Q is an extension of P if $x \leq_P y$ implies $x \leq_Q y$

An extension of P in 2^3

A copy of P in 2^3
The Turán Problem

- When $\mathcal{F} \subseteq 2^n$, we view \mathcal{F} as a poset ordered by inclusion.
The Turán Problem

- When \(\mathcal{F} \subseteq 2^{[n]} \), we view \(\mathcal{F} \) as a poset ordered by inclusion.
- If \(\mathcal{F} \) does not contain a copy of \(P \), then \(\mathcal{F} \) is \(P \)-free.
The Turán Problem

- When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.
- If \mathcal{F} does not contain a copy of P, then \mathcal{F} is P-free. If \mathcal{F} does not contain an extension of P, then \mathcal{F} is $E(P)$-free.
The Turán Problem

- When \(\mathcal{F} \subseteq 2^{[n]} \), we view \(\mathcal{F} \) as a poset ordered by inclusion.
- If \(\mathcal{F} \) does not contain a copy of \(P \), then \(\mathcal{F} \) is \(P \)-free. If \(\mathcal{F} \) does not contain an extension of \(P \), then \(\mathcal{F} \) is \(\mathcal{E}(P) \)-free.

\[
\text{La}^*(n, P) = \max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } P\text{-free}\}
\]
The Turán Problem

- When $\mathcal{F} \subseteq 2^n$, we view \mathcal{F} as a poset ordered by inclusion.
- If \mathcal{F} does not contain a copy of P, then \mathcal{F} is P-free. If \mathcal{F} does not contain an extension of P, then \mathcal{F} is $E(P)$-free.

$$
\text{La}^*(n, P) = \max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^n \text{ and } \mathcal{F} \text{ is } P\text{-free}\}
$$

$$
\text{La}(n, P) = \max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^n \text{ and } \mathcal{F} \text{ is } E(P)\text{-free}\}
$$
The Turán Problem

- When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.
- If \mathcal{F} does not contain a copy of P, then \mathcal{F} is P-free. If \mathcal{F} does not contain an extension of P, then \mathcal{F} is $\mathcal{E}(P)$-free.

\[
\text{La}^*(n, P) = \max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } P\text{-free}\}
\]
\[
\text{La}(n, P) = \max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{E}(P)\text{-free}\}
\]

- Clearly, $\text{La}(n, P) \leq \text{La}^*(n, P)$.
The Turán Problem

- When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.
- If \mathcal{F} does not contain a copy of P, then \mathcal{F} is P-free. If \mathcal{F} does not contain an extension of P, then \mathcal{F} is $\mathcal{E}(P)$-free.

$$\text{La}^*(n, P) = \max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } P\text{-free}\}$$

$$\text{La}(n, P) = \max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{E}(P)\text{-free}\}$$

- Clearly, $\text{La}(n, P) \leq \text{La}^*(n, P)$.
- Let K_r be the chain on r elements.
The Turán Problem

- When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.
- If \mathcal{F} does not contain a copy of P, then \mathcal{F} is P-free. If \mathcal{F} does not contain an extension of P, then \mathcal{F} is $\mathcal{E}(P)$-free.

\[
\text{La}^*(n, P) = \max\{|\mathcal{F}|: \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } P\text{-free}\}
\]

\[
\text{La}(n, P) = \max\{|\mathcal{F}|: \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{E}(P)\text{-free}\}
\]

- Clearly, $\text{La}(n, P) \leq \text{La}^*(n, P)$.
- Let K_r be the chain on r elements.

Theorem (Sperner (1928); Erdős (1945))

$\text{La}^*(n, K_r)$ equals the sum of the $r - 1$ largest binomial coefficients in $\{\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}\}$. For fixed r and $n \to \infty$,

\[
\text{La}^*(n, K_r) = (r - 1 + o(1))\left(\binom{n}{\lfloor n/2 \rfloor}\right).
\]
Growth of $L_a(n, P)$ vs. $L_a^*(n, P)$

- If P has r elements, then K_r is an extension of P.

Question

For fixed P, how does $L_a^*(n, P)$ grow?

Main Conjecture

For fixed P, we have $L_a^*(n, P) = O\left(2^{n/\sqrt{n}}\right)$.
Growth of $\text{La}(n, P)$ vs. $\text{La}^*(n, P)$

- If P has r elements, then K_r is an extension of P.
- $\text{La}(n, P) \leq \text{La}(n, K_r)$.

The challenge is to determine the asymptotics of $\text{La}(n, P)$.
Growth of $\text{La}(n, P)$ vs. $\text{La}^*(n, P)$

- If P has r elements, then K_r is an extension of P.
- $\text{La}(n, P) \leq \text{La}(n, K_r) = (r - 1 + o(1))\left(\binom{n}{\lfloor n/2 \rfloor}\right)$.
Growth of $\text{La}(n, P)$ vs. $\text{La}^*(n, P)$

- If P has r elements, then K_r is an extension of P.
- $\text{La}(n, P) \leq \text{La}(n, K_r) = (r - 1 + o(1))\binom{n}{\lfloor n/2 \rfloor} = O(2^n/\sqrt{n})$.
If P has r elements, then K_r is an extension of P.

If P is not an antichain, then $La(n, P) = \Theta(2^n/\sqrt{n})$.

The challenge is to determine the asymptotics of $La(n, P)$.
Growth of $\text{La}(n, P)$ vs. $\text{La}^*(n, P)$

- If P has r elements, then K_r is an extension of P.
- $\text{La}(n, P) \leq \text{La}(n, K_r) = (r - 1 + o(1))\left(\left\lfloor \frac{n}{2} \right\rfloor \right) = O\left(2^n / \sqrt{n}\right)$.
- If P is not an antichain, then $\text{La}(n, P) = \Theta\left(2^n / \sqrt{n}\right)$.
- The challenge is to determine the asymptotics of $\text{La}(n, P)$.
Growth of $\text{La}(n, P)$ vs. $\text{La}^*(n, P)$

- If P has r elements, then K_r is an extension of P.
- $\text{La}(n, P) \leq \text{La}(n, K_r) = (r - 1 + o(1))(\lfloor n/2 \rfloor) = O(2^n/\sqrt{n})$.
- If P is not an antichain, then $\text{La}(n, P) = \Theta(2^n/\sqrt{n})$.
- The challenge is to determine the asymptotics of $\text{La}(n, P)$.

Question

For fixed P, how does $\text{La}^*(n, P)$ grow?
Growth of $\text{La}(n, P)$ vs. $\text{La}^*(n, P)$

- If P has r elements, then K_r is an extension of P.
- $\text{La}(n, P) \leq \text{La}(n, K_r) = (r - 1 + o(1))(\lfloor n/2 \rfloor) = O(2^n/\sqrt{n})$.
- If P is not an antichain, then $\text{La}(n, P) = \Theta(2^n/\sqrt{n})$.
- The challenge is to determine the asymptotics of $\text{La}(n, P)$.

Question

For fixed P, how does $\text{La}^*(n, P)$ grow?

Main Conjecture

For fixed P, we have $\text{La}^*(n, P) = O(2^n/\sqrt{n})$.
The Turán Threshold

The Turán threshold of P, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{\text{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$
The Turán Threshold

- The Turán threshold of P, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{\text{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

- Main Conj: each poset has a finite Turán threshold.
The Turán Threshold

- The **Turán threshold** of P, denoted $\pi^*(P)$, is given by

$$
\pi^*(P) = \limsup_{n \to \infty} \frac{\text{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.
$$

- Main Conj: each poset has a finite Turán threshold.

Posets with finite Turán thresholds

- [Sperner (1928); Erdős (1945)] $\pi^*(K_r) = r - 1$
The Turán Threshold

- The Turán threshold of P, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{\text{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

- Main Conj: each poset has a finite Turán threshold.

Posets with finite Turán thresholds

- [Sperner (1928); Erdős (1945)] $\pi^*(K_r) = r - 1$
- [Carroll–Katona (2008)]: $\pi^*(\vardiamondsuit) = 1$.

- [Boehnlein–Jiang (2011)]: If P is a tree poset of height h, then $\pi^*(P) = h - 1$.
- [Lu–Milans]: If P is series-parallel, then $\pi^*(P) = O(|P|)$.
- [Lu–Milans]: If P has height 2, then $\pi^*(P) = O(|P|)$.
- Cor: $\pi^*(2[3]) \leq 24$.

The Turán Threshold

- The Turán threshold of P, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{La^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

- Main Conj: each poset has a finite Turán threshold.

Posets with finite Turán thresholds

- [Sperner (1928); Erdős (1945)] $\pi^*(K_r) = r - 1$
- [Carroll–Katona (2008)]: $\pi^*(\vee) = 1$.
- [Boehnlein–Jiang (2011)]: If P is a tree poset of height h, then $\pi^*(P) = h - 1$.

The Turán Threshold

- The Turán threshold of P, denoted $\pi^*(P)$, is given by

$$
\pi^*(P) = \limsup_{n \to \infty} \frac{\text{La}^*(n, P)}{\left(\frac{n}{\lfloor n/2 \rfloor}\right)}.
$$

- Main Conj: each poset has a finite Turán threshold.

Posets with finite Turán thresholds

- [Sperner (1928); Erdős (1945)]: $\pi^*(K_r) = r - 1$
- [Carroll–Katona (2008)]: $\pi^*(\vee) = 1$.
- [Boehnlein–Jiang (2011)]: If P is a tree poset of height h, then $\pi^*(P) = h - 1$.
- [Lu–Milans]: If P is series-parallel, then $\pi^*(P) = O(|P|)$.
The Turán Threshold

- The Turán threshold of P, denoted $\pi^*(P)$, is given by

 $$\pi^*(P) = \limsup_{n \to \infty} \frac{\text{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

- Main Conj: each poset has a finite Turán threshold.

Posets with finite Turán thresholds

- [Sperner (1928); Erdős (1945)]: $\pi^*(K_r) = r - 1$
- [Carroll–Katona (2008)]: $\pi^*(\vee) = 1$.
- [Boehnlein–Jiang (2011)]: If P is a tree poset of height h, then $\pi^*(P) = h - 1$.
- [Lu–Milans]: If P is series-parallel, then $\pi^*(P) = O(|P|)$.
- [Lu–Milans]: If P has height 2, then $\pi^*(P) = O(|P|)$.
The Turán Threshold

- The Turán threshold of P, denoted $\pi^*(P)$, is given by
 \[\pi^*(P) = \limsup_{n \to \infty} \frac{\text{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}. \]

- Main Conj: each poset has a finite Turán threshold.

Posets with finite Turán thresholds

- [Sperner (1928); Erdős (1945)]: $\pi^*(K_r) = r - 1$
- [Carroll–Katona (2008)]: $\pi^*(\nabla) = 1$.
- [Boehnlein–Jiang (2011)]: If P is a tree poset of height h, then $\pi^*(P) = h - 1$.
- [Lu–Milans]: If P is series-parallel, then $\pi^*(P) = O(|P|)$.
- [Lu–Milans]: If P has height 2, then $\pi^*(P) = O(|P|)$.
- Cor: $\pi^*(2^3) \leq 24$.
Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

The Lubell function of \mathcal{F}, denoted $\ell_n(\mathcal{F})$ or $\ell(\mathcal{F})$, is $E[X]$.

Think of $\ell_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq \ell_n(\mathcal{F}) \leq n + 1$.

For $A \subseteq B$, we define $\ell(F; [A, B])$ to be the expected number of times a random, full chain from A to B meets \mathcal{F}.
The Lubell Function

Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.
The Lubell Function

Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

The Lubell function of \mathcal{F}, denoted $\ell_n(\mathcal{F})$ or $\ell(\mathcal{F})$, is $E[X]$.

Think of $\ell_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq \ell_n(\mathcal{F}) \leq n+1$.

For $A \subseteq B$, we define $\ell(F; [A, B])$ to be the expected number of times a random, full chain from A to B meets \mathcal{F}.
Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.
The Lubell Function

Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

- The Lubell function of \mathcal{F}, denoted $\ell_n(\mathcal{F})$ or $\ell(\mathcal{F})$, is $\mathbb{E}[X]$.
- Think of $\ell_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq \ell_n(\mathcal{F}) \leq n + 1$.
- For $A \subseteq B$, we define $\ell(\mathcal{F}; [A, B])$ to be the expected number of times a random, full chain from A to B meets \mathcal{F}.
The Lubell Function

Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

The Lubell function of \mathcal{F}, denoted $\ell_n(\mathcal{F})$ or $\ell(\mathcal{F})$, is $E[X]$.

Think of $\ell_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq \ell_n(\mathcal{F}) \leq n + 1$.

For $A \subseteq B$, we define $\ell(F; [A, B])$ to be the expected number of times a random, full chain from A to B meets F.
The Lubell Function

Given $\mathcal{F} \subseteq 2^n$, let X be the number of times a random full chain meets \mathcal{F}.

- The Lubell function of \mathcal{F}, denoted $\ell_n(\mathcal{F})$ or $\ell(\mathcal{F})$, is $E[X]$.
- Think of $\ell_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq \ell_n(\mathcal{F}) \leq n + 1$.
- For $A \subseteq B$, we define $\ell(F; [A, B])$ to be the expected number of times a random, full chain from A to B meets \mathcal{F}.

$[n]$
The Lubell Function

Given \(\mathcal{F} \subseteq 2^{[n]} \), let \(X \) be the number of times a random full chain meets \(\mathcal{F} \).
The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.
The Lubell Function

Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

- The Lubell function of \mathcal{F}, denoted $\ell_n(\mathcal{F})$ or $\ell(\mathcal{F})$, is $E[X]$.
- Think of $\ell_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq \ell_n(\mathcal{F}) \leq n + 1$.
- For $A \subseteq B$, we define $\ell(\mathcal{F}; [A, B])$ to be the expected number of times a random full chain from A to B meets \mathcal{F}.
The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.
The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

The Lubell function of \mathcal{F}, denoted $\ell_n(\mathcal{F})$ or $\ell(\mathcal{F})$, is $E[X]$. Think of $\ell_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq \ell_n(\mathcal{F}) \leq n + 1$. For $A \subseteq B$, we define $\ell(\mathcal{F}; [A, B])$ to be the expected number of times a random, full chain from A to B meets \mathcal{F}.
The Lubell Function

Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.
The Lubell Function

Given \(\mathcal{F} \subseteq 2^{[n]} \), let \(X \) be the number of times a random full chain meets \(\mathcal{F} \).
Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

$$E[X] = \sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}}$$
The Lubell Function

Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

\[
\mathbb{E}[X] = \sum_{A \in \mathcal{F}} \frac{1}{n^{|A|}}
\]

The Lubell function of \mathcal{F}, denoted $\ell_n(\mathcal{F})$ or $\ell(\mathcal{F})$, is $\mathbb{E}[X]$.
The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.
- $E[X] = \sum_{A \in \mathcal{F}} \frac{1}{n^{|A|}}$
- The Lubell function of \mathcal{F}, denoted $\ell_n(\mathcal{F})$ or $\ell(\mathcal{F})$, is $E[X]$.
- Think of $\ell_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq \ell_n(\mathcal{F}) \leq n + 1$.
The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.
- $E[X] = \sum_{A \in \mathcal{F}} \frac{1}{n^{|A|}}$
- The Lubell function of \mathcal{F}, denoted $\ell_n(\mathcal{F})$ or $\ell(\mathcal{F})$, is $E[X]$.
- Think of $\ell_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq \ell_n(\mathcal{F}) \leq n + 1$.
- For $A \subseteq B$, we define $\ell(\mathcal{F}; [A, B])$ to be the expected number of times a random, full chain from A to B meets \mathcal{F}.

The Lubell Threshold

- The Lubell threshold, denoted $\lambda^*(P)$, is

$$\lambda^*(P) = \sup\{\ell(F) : F \text{ is } P\text{-free}\}.$$
The Lubell Threshold

The Lubell threshold, denoted $\lambda^*(P)$, is

$$\lambda^*(P) = \sup\{\ell(F) : F \text{ is } P\text{-free}\}.$$

Since $\ell(F) = \sum_{A \in F} \frac{1}{|A|} \geq \frac{|F|}{\binom{n}{\lfloor n/2 \rfloor}}$, we have $\lambda^*(P) \geq \pi^*(P)$.
The Lubell Threshold

The Lubell threshold, denoted $\lambda^*(P)$, is

$$\lambda^*(P) = \sup \{ \ell(\mathcal{F}) : \mathcal{F} \text{ is } P\text{-free} \}.$$

Since $\ell(\mathcal{F}) = \sum_{A \in \mathcal{F}} \frac{1}{|A|} \geq \frac{|\mathcal{F}|}{n \lceil n/2 \rceil}$, we have $\lambda^*(P) \geq \pi^*(P)$.

Conjecture

Always $\lambda^*(P)$ is finite.
The Standard Example: Proof Sketch

Theorem

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]
The Standard Example: Proof Sketch

Theorem

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

Proof (sketch).
The Standard Example: Proof Sketch

Theorem

\[r - 2 \leq \lambda^* (S_r) \leq 2r + O(\sqrt{r}) \]

Proof (sketch).

Let \(F_0 \subseteq 2^{[n]} \) with \(\ell(F_0) \geq 2r + \Theta(\sqrt{r}) \).

1. Let \(F_1 = \{ A \in F_0 : |A| \leq n/2 \} \). By self-duality, we may assume \(\ell(F_1) \geq \frac{1}{2} \ell(F_0) \geq r + \Theta(\sqrt{r}) \).
Theorem

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

Proof (sketch).
Let \(F_0 \subseteq 2^{[n]} \) with \(\ell(F_0) \geq 2r + \Theta(\sqrt{r}) \).

1. Let \(F_1 = \{ A \in F_0 : |A| \leq n/2 \} \). By self-duality, we may assume \(\ell(F_1) \geq \frac{1}{2} \ell(F_0) \geq r + \Theta(\sqrt{r}) \).

2. When \(t \in A \in F \), we say that \(t \) is a pivot of \(A \) if

 \[t \in A \subseteq F \]
The Standard Example: Proof Sketch

Theorem

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

Proof (sketch).

Let \(F_0 \subseteq 2^{[n]} \) with \(\ell(F_0) \geq 2r + \Theta(\sqrt{r}) \).

1. Let \(F_1 = \{ A \in F_0 : |A| \leq n/2 \} \). By self-duality, we may assume \(\ell(F_1) \geq \frac{1}{2} \ell(F_0) \geq r + \Theta(\sqrt{r}) \).

2. When \(t \in A \in F \), we say that \(t \) is a **pivot** of \(A \) if there exists an element \(t' \notin A \) such that \(A - \{ t \} + \{ t' \} \in F \).
The Standard Example: Proof Sketch

Theorem

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

Proof (sketch).

Let \(F_0 \subseteq 2^n \) with \(\ell(F_0) \geq 2r + \Theta(\sqrt{r}) \).

1. Let \(F_1 = \{ A \in F_0 : |A| \leq n/2 \} \). By self-duality, we may assume \(\ell(F_1) \geq \frac{1}{2} \ell(F_0) \geq r + \Theta(\sqrt{r}) \).

2. When \(t \in A \in F \), we say that \(t \) is a pivot of \(A \) if there exists an element \(t' \notin A \) such that \(A - \{t\} + \{t'\} \in F \).

A set \(A \in F \) is \(\gamma \)-flexible if it has at least \(\gamma |A| \) pivots.
The Standard Example: Proof Sketch

Theorem

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

Proof (sketch).

3. Form \(F_2 \) from \(F_1 \) by throwing away all sets that are not \((1 - \frac{1}{\sqrt{r}})\)-flexible. We have \(\ell(F_2) \geq \ell(F_1) - O(\sqrt{r}) \).
The Standard Example: Proof Sketch

Theorem

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

Proof (sketch).

3. Form \(F_2 \) from \(F_1 \) by throwing away all sets that are not \((1 - \frac{1}{\sqrt{r}})\)-flexible. We have \(\ell(F_2) \geq \ell(F_1) - O(\sqrt{r}) \).

4. Pick a set \(B \in F_2 \) with \(\ell(F_2; [\emptyset, B]) \geq \ell(F_2) \).
The Standard Example: Proof Sketch

Theorem

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

Proof (sketch).

3. Form \(\mathcal{F}_2 \) from \(\mathcal{F}_1 \) by throwing away all sets that are not \((1 - \frac{1}{\sqrt{r}})\)-flexible. We have \(\ell(\mathcal{F}_2) \geq \ell(\mathcal{F}_1) - O(\sqrt{r}) \).

4. Pick a set \(B \in \mathcal{F}_2 \) with \(\ell(\mathcal{F}_2; [\emptyset, B]) \geq \ell(\mathcal{F}_2) \).

Let \(T \) be the set of pivots in \(B \).
The Standard Example: Proof Sketch

Theorem

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

Proof (sketch).

3. Form \(\mathcal{F}_2 \) from \(\mathcal{F}_1 \) by throwing away all sets that are not \((1 - \frac{1}{\sqrt{r}})\)-flexible. We have \(\ell(\mathcal{F}_2) \geq \ell(\mathcal{F}_1) - O(\sqrt{r}) \).

4. Pick a set \(B \in \mathcal{F}_2 \) with \(\ell(\mathcal{F}_2; [\emptyset, B]) \geq \ell(\mathcal{F}_2) \).

Let \(T \) be the set of pivots in \(B \). Note that \(|T| \geq \gamma |B| \).
The Standard Example: Proof Sketch

Theorem

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

Proof (sketch).

5. Since \(\ell(\mathcal{F}_2; [\emptyset, B]) \) is large and \(|T| \geq \gamma|B|\), we find sets \(A_1, \ldots, A_r \in \mathcal{F}_2 \) and elements \(t_1, \ldots, t_r \in T \) such that
The Standard Example: Proof Sketch

Theorem

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

Proof (sketch).

5. Since \(\ell(\mathcal{F}_2; [\emptyset, B]) \) is large and \(|T| \geq \gamma |B| \), we find sets \(A_1, \ldots, A_r \in \mathcal{F}_2 \) and elements \(t_1, \ldots, t_r \in T \) such that
 \begin{enumerate}[(a)]
 \item \(A_i \subseteq B \)
 \end{enumerate}
The Standard Example: Proof Sketch

Theorem

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

Proof (sketch).

5. Since \(\ell(\mathcal{F}_2; [\emptyset, B]) \) is large and \(|T| \geq \gamma |B|\), we find sets \(A_1, \ldots, A_r \in \mathcal{F}_2 \) and elements \(t_1, \ldots, t_r \in T \) such that
 (a) \(A_i \subseteq B \)
 (b) \(t_i \in A_j \) if and only if \(i = j \).
The Standard Example: Proof Sketch

Theorem

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

Proof (sketch).

6. Since \(t_i \in T \), we can pivot \(B \) away from \(t_i \) to obtain \(B_i \in \mathcal{F}_2 \).
Theorem
\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

Proof (sketch).

6. Since \(t_i \in T \), we can pivot \(B \) away from \(t_i \) to obtain \(B_i \in \mathcal{F}_2 \).

7. \(t_i \in A_i \) but \(t_i \not\in B_i \), so \(A_i \not\subset B_i \).
The Standard Example: Proof Sketch

Theorem

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

Proof (sketch).

6. Since \(t_i \in T \), we can pivot \(B \) away from \(t_i \) to obtain \(B_i \in \mathcal{F}_2 \).
7. \(t_i \in A_i \) but \(t_i \not\in B_i \), so \(A_i \not\subseteq B_i \).
8. If \(j \neq i \), then \(A_j \subseteq B - \{t_i\} \subseteq B_i \).
The Standard Example: Proof Sketch

Theorem

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

Proof (sketch).

6. Since \(t_i \in T \), we can pivot \(B \) away from \(t_i \) to obtain \(B_i \in \mathcal{F}_2 \).
7. \(t_i \in A_i \) but \(t_i \not\in B_i \), so \(A_i \not\subseteq B_i \).
8. If \(j \neq i \), then \(A_j \subseteq B - \{t_i\} \subseteq B_i \).
9. \(A_1, \ldots, A_r \) and \(B_1, \ldots, B_r \) form a copy of \(S_r \).
Toward Height 3

Definition
The generalized standard example of width r and height h, denoted $S_{r,h}$, has h disjoint r-antichains A_1, \ldots, A_h where $A_i \cup A_{i+1}$ is a copy of S_r.

$S_{5,3}$

Theorem
$\pi^*(S_{r,h}) = O(r)$.

Proof involves about 10 cleaning steps.

Not clear how to extend to other posets of height 3 or $S_{r,h}$.

$S_{5,3}$
Toward Height 3

Definition
The generalized standard example of width r and height h, denoted $S_{r,h}$, has h disjoint r-antichains A_1, \ldots, A_h where $A_i \cup A_{i+1}$ is a copy of S_r.

$S_{5,3}$

Theorem
$\pi^*(S_{r,3}) = O(r)$.
Toward Height 3

Definition
The generalized standard example of width r and height h, denoted $S_{r,h}$, has h disjoint r-antichains A_1, \ldots, A_h where $A_i \cup A_{i+1}$ is a copy of S_r.

$S_{5,3}$

Theorem
$\pi^*(S_{r,3}) = O(r)$.

- Proof involves about 10 cleaning steps.
Toward Height 3

Definition
The generalized standard example of width r and height h, denoted $S_{r,h}$, has h disjoint r-antichains A_1, \ldots, A_h where $A_i \cup A_{i+1}$ is a copy of S_r.

\[S_{5,3} \]

Theorem
\[\pi^*(S_{r,3}) = O(r). \]

- Proof involves about 10 cleaning steps.
- Not clear how to extend to other posets of height 3 or $S_{r,h}$.
A natural attack

- Each poset is contained in a Boolean lattice.

\[
\lambda^* \left(2^3\right) \leq 2 + \lambda^* \left(S^3\right) \leq 24.
\]

Open problem: show that \(\lambda^* \left(2^4\right)\) or \(\pi^* \left(2^4\right)\) is finite.
A natural attack

- Each poset is contained in a Boolean lattice.
- To establish the conjecture, it suffices to show that each Boolean lattice has a finite Lubell threshold.
Each poset is contained in a Boolean lattice. To establish the conjecture, it suffices to show that each Boolean lattice has a finite Lubell threshold.

\[\lambda^*(2^3) \leq 2 + \lambda^*(S_3) \leq 24. \]
A natural attack

- Each poset is contained in a Boolean lattice.
- To establish the conjecture, it suffices to show that each Boolean lattice has a finite Lubell threshold.
- $\lambda^*(2^3) \leq 2 + \lambda^*(S_3) \leq 24$.
- Open problem: show that $\lambda^*(2^4)$ or $\pi^*(2^4)$ is finite.
A natural attack

- Several inductive approaches to forcing 2^r stitch together two copies of 2^{r-1}.
A natural attack

- Several inductive approaches to forcing 2^r stitch together two copies of 2^{r-1}.
- In many cases, the resulting copy of 2^r would be highly structured.
A natural attack

- Several inductive approaches to forcing 2^r stitch together two copies of 2^{r-1}.
- In many cases, the resulting copy of 2^r would be highly structured.

Definition

- Given disjoint sets X_0, X_1, \ldots, X_d, with $X_i \neq \emptyset$ for $i \geq 1$, ...
A natural attack

- Several inductive approaches to forcing 2^r stitch together two copies of 2^{r-1}.
- In many cases, the resulting copy of 2^r would be highly structured.

Definition

- Given disjoint sets X_0, X_1, \ldots, X_d, with $X_i \neq \emptyset$ for $i \geq 1$, the generated d-dimensional Boolean algebra is the family of all sets formed by the union of X_0 with 0 or more members of $\{X_1, \ldots, X_d\}$.
A natural attack

- Several inductive approaches to forcing 2^r stitch together two copies of 2^{r-1}.
- In many cases, the resulting copy of 2^r would be highly structured.

Definition

- Given disjoint sets X_0, X_1, \ldots, X_d, with $X_i \neq \emptyset$ for $i \geq 1$, the generated d-dimensional Boolean algebra is the family of all sets formed by the union of X_0 with 0 or more members of $\{X_1, \ldots, X_d\}$.
- Such a family of 2^d sets forms a copy of B_d.
A natural attack

- Several inductive approaches to forcing 2^r stitch together two copies of 2^{r-1}.
- In many cases, the resulting copy of 2^r would be highly structured.

Definition

- Given disjoint sets X_0, X_1, \ldots, X_d, with $X_i \neq \emptyset$ for $i \geq 1$, the generated d-dimensional Boolean algebra is the family of all sets formed by the union of X_0 with 0 or more members of $\{X_1, \ldots, X_d\}$.
- Such a family of 2^d sets forms a copy of \mathcal{B}_d.
- A family is \mathcal{B}_d-free if it does not contain a copy of \mathcal{B}_d.
A natural attack

- Several inductive approaches to forcing 2^r stitch together two copies of 2^{r-1}.
- In many cases, the resulting copy of 2^r would be highly structured.

Definition

- Given disjoint sets X_0, X_1, \ldots, X_d, with $X_i \neq \emptyset$ for $i \geq 1$, the generated d-dimensional Boolean algebra is the family of all sets formed by the union of X_0 with 0 or more members of $\{X_1, \ldots, X_d\}$.
- Such a family of 2^d sets forms a copy of B_d.
- A family is B_d-free if it does not contain a copy of B_d.

Fact
There exists $\mathcal{F} \subseteq 2^n$ such that \mathcal{F} is B_2-free and $|\mathcal{F}| \geq \Omega(n^{1/4} \cdot \frac{2^n}{\sqrt{n}})$.
The Turán Problem for Boolean Algebras

- What is the largest size of a B_d-free subfamily of $2^{[n]}$?
The Turán Problem for Boolean Algebras

- What is the largest size of a B_d-free subfamily of $2^{[n]}$?

- Let $b(n, d) = \max \{|F| : F \subseteq 2^{[n]} \text{ and } F \text{ is } B_d\text{-free}\}$.

Prior Work
The Turán Problem for Boolean Algebras

- What is the largest size of a B_d-free subfamily of 2^n?
- Let $b(n, d) = \max \{|F| : F \subseteq 2^n \text{ and } F \text{ is } B_d\text{-free}\}$.

Prior Work

- [Sperner] $b(n, 1) = \left(\binom{n}{n/2}\right) \sim \sqrt{2/\pi} \cdot n^{-1/2} \cdot 2^n$
What is the largest size of a \mathcal{B}_d-free subfamily of $2^{[n]}$?

Let $b(n, d) = \max \{|F| : F \subseteq 2^{[n]} \text{ and } F \text{ is } \mathcal{B}_d\text{-free}\}$.

Prior Work

- [Sperner] $b(n, 1) = \binom{n}{\lfloor n/2 \rfloor} \sim \sqrt{2/\pi} \cdot n^{-1/2} \cdot 2^n$

- [Erdős–Kleitman 1971] For some constants c_1, c_2 and n sufficiently large

\[c_1 \cdot n^{-1/4} \cdot 2^n \leq b(n, 2) \leq c_2 \cdot n^{-1/4} \cdot 2^n. \]
The Turán Problem for Boolean Algebras

What is the largest size of a B_d-free subfamily of 2^n?

Let $b(n, d) = \max \{ |F| : F \subseteq 2^n \text{ and } F \text{ is } B_d\text{-free} \}$.

Prior Work

[Gunderson–Rödl–Sidorenko 1999] For each d, there exists c_d such that for n sufficiently large

$$n^{-\frac{d}{2d+1-2 \cdot (1-o(1))}} \cdot 2^n \leq b(n, d) \leq c_d \cdot n^{-\frac{1}{2d}} \cdot 2^n.$$
The Turán Problem for Boolean Algebras

- What is the largest size of a B_d-free subfamily of $2^{[n]}$?
- Let $b(n, d) = \max \{ |F| : F \subseteq 2^{[n]} \text{ and } F \text{ is } B_d\text{-free} \}$.

Prior Work

- [Gunderson–Rödl–Sidorenko 1999] For each d, there exists c_d such that for n sufficiently large

 $$n^{-\frac{d}{2^{d+1}-2}}(1-o(1)) \cdot 2^n \leq b(n, d) \leq c_d \cdot n^{-\frac{1}{2^d}} \cdot 2^n.$$

- Here, $c_d = (10d)^d(1 + o(1))$.
The Turán Problem for Boolean Algebras

- What is the largest size of a \mathcal{B}_d-free subfamily of $2^{[n]}$?
- Let $b(n, d) = \max \{|F| : F \subseteq 2^{[n]} \text{ and } F \text{ is } \mathcal{B}_d\text{-free}\}$.

Prior Work

- [Gunderson–Rödl–Sidorenko 1999] For each d, there exists c_d such that for n sufficiently large

\[n^{\frac{d}{2d+1-2(1-o(1))}} \cdot 2^n \leq b(n, d) \leq c_d \cdot n^{-\frac{1}{2d}} \cdot 2^n. \]

- Here, $c_d = (10d)^d(1 + o(1))$.

Theorem

\[b(n, d) \leq 50 \cdot n^{-\frac{1}{2d}} \cdot 2^n. \]
Summary & Open Problems

Theorems

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

If \(P \) has height 2, then \(\lambda^*(P) \leq O(|P|) \).

\[\lambda^*(S_{r,3}) \leq O(r) \]
Summary & Open Problems

Theorems

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

If \(P \) has height 2, then \(\lambda^*(P) \leq O(|P|) \).

\[\lambda^*(S_{r,3}) \leq O(r) \]

Problems

- Conjecture: Always \(\lambda^*(P) \) is finite.
- Show that \(\lambda^*(P) \) is finite when \(P \) has height 3.
- Find a bound \(\lambda^*(2^4) \).
Summary & Open Problems

Theorems

\[r - 2 \leq \lambda^*(S_r) \leq 2r + O(\sqrt{r}) \]

If \(P \) has height 2, then \(\lambda^*(P) \leq O(|P|) \).

\[\lambda^*(S_{r,3}) \leq O(r) \]

Problems

- Conjecture: Always \(\lambda^*(P) \) is finite.
- Show that \(\lambda^*(P) \) is finite when \(P \) has height 3.
- Find a bound \(\lambda^*(2^{[4]}) \).

Thank You.