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The Turan Problem

» When F C 2l we view F as a poset ordered by inclusion.
> If F does not contain a copy of P, then F is P-free. If F

, does not contain an extension of P, then F is £(P)-free.
La*(n, P) = max{|F|: F C 2"l and F is P-free}
La(n, P) = max{|F|: F C 2"l and F is £(P)-free}
» Clearly, La(n, P) < La*(n, P).

» Let K, be the chain on r elements.

Theorem (Sperner (1928); Erdés (1945))

La*(n, K;) equals the sum of the r — 1 largest binomial coefficients
in{(5): (1),---, ()} For fixed r and n — o,

La*(n, K,) = (r— 1+ o(1))(Ln’/’2J>.
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» If P has r elements, then K, is an extension of P.
» La(n, P) < La(n,K,)=(r—1+ 0(1))(Ln72j) = 0(2"/\/n).
» If P is not an antichain, then La(n, P) = ©(2"/+/n).
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Growth of La(n, P) vs. La*(n, P)
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If P has r elements, then K, is an extension of P.

La(n, P) < La(n, K,) = (r — 1+ o(1)) (7)) = O(2"//n).
If P is not an antichain, then La(n, P) = ©(2"//n).

The challenge is to determine the asymptotics of La(n, P).
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Question
For fixed P, how does La*(n, P) grow?

Main Conjecture
For fixed P, we have La*(n, P) = O(2"/y/n).



The Turan Threshold

» The Turan threshold of P, denoted 7*(P), is given by

(P) = Iimsupw
n—o0 (|_n/2j)



The Turan Threshold

» The Turan threshold of P, denoted 7*(P), is given by

(P) = Iimsupw
n—0o0 (|_n/2j)

» Main Conj: each poset has a finite Turdn threshold.



The Turan Threshold

» The Turan threshold of P, denoted 7*(P), is given by

, La*(n, P
7 (P) = limsup 22 (1 P)
n—o0 (|_n/2j)
» Main Conj: each poset has a finite Turdn threshold.

Posets with finite Turan thresholds

> [Sperner (1928); Erdés (1945)] m*(K,) =r —1



The Turan Threshold

» The Turan threshold of P, denoted 7*(P), is given by
, La*(n, P
7(P) = lim sup Z2(m P)
n—o0 (|_n/2j)
» Main Conj: each poset has a finite Turdn threshold.
Posets with finite Turan thresholds

> [Sperner (1928); Erdés (1945)] m*(K,) =r —1
» [Carroll-Katona (2008)]: 7*(\/) = 1.



The Turan Threshold

» The Turan threshold of P, denoted 7*(P), is given by

(P) = Iimsupw
n—o0 (|_n/2j)

» Main Conj: each poset has a finite Turdn threshold.

Posets with finite Turdn thresholds
> [Sperner (1928); Erdés (1945)] m*(K,) =r —1
» [Carroll-Katona (2008)]: 7*(\/) = 1.

» [Boehnlein—Jiang (2011)]: If P is a tree poset of height h,
then 7*(P) = h — 1.



The Turan Threshold

» The Turan threshold of P, denoted 7*(P), is given by

(P) = Iimsupw
n—0o0 (|_n/2j)

» Main Conj: each poset has a finite Turdn threshold.

Posets with finite Turdn thresholds
> [Sperner (1928); Erdés (1945)] m*(K,) =r —1
» [Carroll-Katona (2008)]: 7*(\/) = 1.
» [Boehnlein—Jiang (2011)]: If P is a tree poset of height h,
then 7*(P) = h — 1.
» [Lu-Milans]: If P is series-parallel, then 7*(P) = O(|P]).



The Turan Threshold

» The Turan threshold of P, denoted 7*(P), is given by

(P) = Iimsupw
n—o0 (|_n/2j)

» Main Conj: each poset has a finite Turdn threshold.

Posets with finite Turdn thresholds

> [Sperner (1928); Erdés (1945)] m*(K,) =r —1
[Carroll-Katona (2008)]: 7*(\/") = 1.
[Boehnlein—Jiang (2011)]: If P is a tree poset of height h,
then 7*(P) = h — 1.
[Lu—Milans]: If P is series-parallel, then 7*(P) = O(|P]).
[Lu-Milans]: If P has height 2, then 7*(P) = O(|P|).
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The Turan Threshold

» The Turan threshold of P, denoted 7*(P), is given by

(P) = Iimsupw
n—o0 (|_n/2j)

» Main Conj: each poset has a finite Turdn threshold.

Posets with finite Turdn thresholds

> [Sperner (1928); Erdés (1945)] m*(K,) =r —1
[Carroll-Katona (2008)]: 7*(\/") = 1.
[Boehnlein—Jiang (2011)]: If P is a tree poset of height h,
then 7*(P) = h — 1.
[Lu—Milans]: If P is series-parallel, then 7*(P) = O(|P]).
[Lu-Milans]: If P has height 2, then 7*(P) = O(|P|).
Cor: 7*(283) < 24.
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The Lubell Function

Given F C 2[”], let X be the
number of times a random full
chain meets F.

1

AeF \A|

The Lubell function of F, denoted
Un(F) or £(F), is E[X].
Think of £,(F) as a measure of the
size of F, with 0 < {,(F) < n+1.
For A C B, we define ((F; [A, B])
to be the expected number of
times a random, full chain from A
to B meets F.
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The Lubell Threshold

» The Lubell threshold, denoted \*(P), is

N (P) = sup{l(F): Fis P-free}.

> L we have \*(P) > 7*(P).

> Since ((F) =Y pcr 7+ (Ln/2J)

)

Conjecture
Always \*(P) is finite.
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Theorem

P r—2< XS <2r+ 0(y/r)

Proof (sketch).
Let Fo C 2l with £(Fo) > 2r 4+ ©(y/7).
1. Let F1 = {A € Fo: |A] < n/2}. By self-duality, we may
assume {(F1) > 30(Fo) > r + O(/7).
2. When t € A € F, we say that t is a pivot of A if there exists
an element t' ¢ A such that A — {t} + {t'} € F.

A

A set A € F is v-flexible if it has at least «y|A| pivots. -
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Theorem

P r—2< XS <2r+ 0(y/r)

Proof (sketch).

3. Form F, from Fi by throwing away all sets that are not
(1-— %)—flexible. We have ((F») > £(F1) — O(y/r).

4. Pick a set B € F» with {(F; [@, B]) > U(F2).

T

Let T be the set of pivots in B. Note that |T| > ~|B].
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The Standard Example: Proof Sketch

Theorem

P r—2< XS <2r+ 0(y/r)

Proof (sketch).

5. Since {(F»; [@, B]) is large and | T| > ~|B|, we find sets
Ai,..., A, € F5 and elements t1,...,t, € T such that
(a) A,‘ g B
(b) t € A; if and only if i = j.
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The Standard Example: Proof Sketch

Theorem

% r—2<X(8) <2r+ 0(/r)

Proof (sketch).

6. Since t; € T, we can pivot B away from t; to obtain B; € F».
7. t; € A; but t; ¢ B;, so A; Z B;.
8. If j # i, then Ang—{t,'}gB,'.



The Standard Example: Proof Sketch
Theorem
P r—2<X(8) <2r+ 0(/r)

Proof (sketch).

. Since t; € T, we can pivot B away from t; to obtain B; € F».
ti€ A but t; € Bj, so A; € B;.

CNfj#i, then A; C B - {t;} C B,.

Ai,..., A, and By,..., B, form a copy of S,. N

© o ~N O
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Toward Height 3

Definition
The generalized standard example of width r and height h,
denoted S, 5, has h disjoint r-antichains Ay, ..., Ay where

A;iUA;1 is a copy of .

Theorem
(S, 3) = O(r).

» Proof involves about 10 cleaning steps.
> Not clear how to extend to other posets of height 3 or S, 4.
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A natural attack

v

Each poset is contained in a Boolean lattice.

v

To establish the conjecture, it suffices to show that each
Boolean lattice has a finite Lubell threshold.

A*(2B1) <2 4 A%(S3) < 24.
Open problem: show that \*(2[) or 7*(214]) is finite.

v

v
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A natural attack

» Several inductive approaches to forcing 2" stitch together
two copies of 2[r—11,

» In many cases, the resulting copy of 2l would be highly
structured.

Definition

» Given disjoint sets Xp, X1, ..., Xy, with X; # @ for i > 1, the
generated d-dimensional Boolean algebra is the family of all
sets formed by the union of Xy with O or more members of

{X1,..., X4}
» Such a family of 29 sets forms a copy of By.
> A family is By-free if it does not contain a copy of By.

Fact

There exists F C 207 such that F is Bo-free and |F| > Q(n% ‘ %)
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The Turan Problem for Boolean Algebras
» What is the largest size of a By-free subfamily of 2["1?
> Let b(n,d) =max {|F|: F C 2] and Fis Bgy-free} .

Prior Work

» [Gunderson—RodI-Sidorenko 1999] For each d, there exists ¢4
such that for n sufficiently large

n_2d+(1172(1—0(1)) . 2n S b(n,d) S cq - n_2% X 2n'
» Here, cg = (10d)9(1 + o(1)).
Theorem

b(n,d) <50 - e 2m,
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Summary & Open Problems

Theorems

>3 -2 < A(S,) < 2r + O(y/7)
/&\\\ If P has height 2, then A*(P) < O(|P]).

A*(Sr3) < O(r)

Problems

» Conjecture: Always \*(P) is finite.
» Show that A*(P) is finite when P has height 3.
» Find a bound \*(214]).

Thank You.
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