Recent Progress on Diamond-Free Families

Ryan Martin

Iowa State University

Joint work with Lucas Kramer and Michael Young

Minisymposium on Posets, Part I 2014 SIAM Conference on Discrete Mathematics

Joint Work

This talk is based on joint work with:

Lucas Kramer Iowa State

Michael Young Iowa State

The Boolean lattice

Definition

For any (finite) set S, the POWER SET OF S is the set of all subsets of S and is denoted 2^{S} .

Definition

The BOOLEAN LATTICE OF DIMENSION n is a partially-ordered set with ground set $2^{\{1,\dots,n\}}$ so that $X \leq Y$ in the poset whenever $X \subseteq Y$ as sets. We denote it as \mathcal{B}_n .

The Boolean lattice

Definition

The BOOLEAN LATTICE OF DIMENSION n is a partially-ordered set with ground set $2^{\{1,\dots,n\}}$ so that $X \leq Y$ in the poset whenever $X \subseteq Y$ as sets. We denote it as \mathcal{B}_n .

Figure: \mathcal{B}_3

Figure: \mathcal{B}_2 , the "DIAMOND"

Formal definitions

Definition

Let \mathcal{P} be a finite poset. Another poset \mathcal{Q} is said to CONTAIN \mathcal{P} AS A (WEAK) SUBPOSET if there exists an injective map $\varphi: \mathcal{P} \to \mathcal{Q}$ such that if $p_1 \preceq_{\mathcal{P}} p_2$, then $\phi(p_1) \preceq_{\mathcal{Q}} \phi(p_2)$.

If Q does not contain P as a subposet, then Q is said to be P-FREE.

A family of sets $\mathcal{F} \subseteq \mathcal{B}_n$ is said to be \mathcal{P} -free if the induced order on \mathcal{F} is \mathcal{P} -free.

Formal definitions

Definition

Let $\mathcal P$ be a finite poset. Another poset $\mathcal Q$ is said to CONTAIN $\mathcal P$ AS A (WEAK) SUBPOSET if there exists an injective map $\varphi: \mathcal P \to \mathcal Q$ such that if $p_1 \preceq_{\mathcal P} p_2$, then $\phi(p_1) \preceq_{\mathcal Q} \phi(p_2)$.

If Q does not contain P as a subposet, then Q is said to be P-FREE.

A family of sets $\mathcal{F} \subseteq \mathcal{B}_n$ is said to be \mathcal{P} -free if the induced order on \mathcal{F} is \mathcal{P} -free.

Example

A family \mathcal{F} is \mathcal{B}_1 -free if and only if it is an ANTICHAIN.

Figure: \mathcal{B}_1

Theorem (Sperner, 1928)

Let $\operatorname{La}(n, \mathcal{C}_2)$ denote the size of the largest family in \mathcal{B}_n , which has no chain of height 2. Then,

$$\operatorname{La}(n, \mathcal{C}_2) = \binom{n}{\lfloor n/2 \rfloor}.$$

Theorem (Erdős, 1945)

Let $La(n, C_k)$ denote the size of the largest family in \mathcal{B}_n , which has no chain of height k as a (weak) subposet. Then,

$$\operatorname{La}(n, \mathcal{C}_k) = \Sigma(n, k-1) \sim (k-1) \binom{n}{\lfloor n/2 \rfloor},$$

where $\Sigma(n, k-1)$ denotes the sum of the k-1 largest binomial coefficients $\binom{n}{\ell}$.

Theorem (Griggs-Lu, 2009 ($r \ge 4$ even); Lu, 2012+ ($r \ge 7$ odd))

Let $r \in \{4, 6, 7, 8, ...\}$ and $La(n, \mathcal{CR}_r)$ denote the size of the largest family in \mathcal{B}_n , which has no "crown" of length 2r as a (weak) subposet. Then,

$$\operatorname{La}(n, \mathcal{CR}_r) \sim \binom{n}{\lfloor n/2 \rfloor}.$$

Theorem (Griggs-Li-Lu, 2011)

Let $r \in \{3,4,7,8,9,15,\ldots\}$ (∞ ly many) and $\mathrm{La}(n,\mathcal{D}_r)$ denote the size of the largest family in \mathcal{B}_n , which has no "generalized diamond" of order r+2 as a (weak) subposet. Then,

$$La(n, \mathcal{D}_r) = \sum (n, \lceil \log_2(r+2) \rceil) \\ \sim \lceil \log_2(r+2) \rceil \binom{n}{\lfloor n/2 \rfloor},$$

where $\Sigma(n, k)$ denotes the sum of the k largest binomial coefficients $\binom{n}{\ell}$.

Thanks to Wei-Tian Li for this summary and Lucas Kramer for the figures.

Theorem (Bukh, 2009)

Let \mathcal{P} be a poset whose Hasse diagram is a tree and let $e(\mathcal{P})$ be the least number such that \mathcal{P} is not a subposet of $e(\mathcal{P})$ layers in \mathcal{B}_n , for n sufficiently large. Then,

$$\operatorname{La}(n,\mathcal{P}) \sim e(\mathcal{P}) \binom{n}{\lfloor n/2 \rfloor}.$$

Conjecture (Griggs-Lu, 2009)

Let \mathcal{P} be any fixed poset. Then,

$$\pi(\mathcal{P}) = \lim_{n \to \infty} \frac{\operatorname{La}(n, \mathcal{P})}{\binom{n}{\lfloor n/2 \rfloor}}$$

exists and is an integer.

Conjecture (Griggs-Lu, 2009)

Let P be any fixed poset. Then,

$$\pi(\mathcal{P}) = \lim_{n \to \infty} \frac{\operatorname{La}(n, \mathcal{P})}{\binom{n}{\lfloor n/2 \rfloor}}$$

exists and is an integer.

Conjecture (Saks-Winkler, 2009)

In addition, if $e(\mathcal{P})$ is the least number such that \mathcal{P} is not a subposet of any $e(\mathcal{P})$ layers in \mathcal{B}_n , for n sufficiently large then,

$$\pi(\mathcal{P}) = e(\mathcal{P}).$$

Theorem (Griggs-Lu, 2009)

Let $\mathrm{La}(n,\lozenge)$ denote the size of the largest family in \mathcal{B}_n , which has no "diamond" as a (weak) subposet. Then,

$$\operatorname{La}\left(n,\lozenge\right) \leq \left(2.3 \quad + o(1)\right) \binom{n}{\lfloor n/2 \rfloor}.$$

Theorem (Axenovich-Manske-M., 2012)

Let $\mathrm{La}(n,\lozenge)$ denote the size of the largest family in \mathcal{B}_n , which has no "diamond" as a (weak) subposet. Then,

$$\operatorname{La}(n,\lozenge) \leq (2.284 + o(1)) \binom{n}{\lfloor n/2 \rfloor}.$$

Theorem (Griggs-Li-Lu, 2011)

Let $\mathrm{La}(n,\lozenge)$ denote the size of the largest family in \mathcal{B}_n , which has no "diamond" as a (weak) subposet. Then,

$$\operatorname{La}(n,\lozenge) \leq (2.273 + o(1)) \binom{n}{\lfloor n/2 \rfloor}.$$

Theorem (Kramer-M.-Young, 2012)

Let $\operatorname{La}(n, \lozenge)$ denote the size of the largest family in \mathcal{B}_n , which has no "diamond" as a (weak) subposet. Then,

$$\operatorname{La}(n,\lozenge) \leq (2.25 + o(1)) \binom{n}{\lfloor n/2 \rfloor}.$$

Theorem (Kramer-M.-Young, 2012)

Let $\operatorname{La}(n, \lozenge)$ denote the size of the largest family in \mathcal{B}_n , which has no "diamond" as a (weak) subposet. Then,

$$\operatorname{La}(n,\lozenge) \leq (2.25 + o(1)) \binom{n}{\lfloor n/2 \rfloor}.$$

Proposition

$$\operatorname{La}(n,\lozenge) \geq \Sigma(n,2) \sim 2\binom{n}{\lfloor n/2 \rfloor}.$$

The Lubell function

Definition

Let $\mathcal F$ be a family of sets in the n-dimensional Boolean lattice, $\mathcal B_n$. The Lubell function of $\mathcal F$ is

$$\operatorname{Lu}(n,\mathcal{F}) = \operatorname{Lu}(\mathcal{F}) = \sum_{F \in \mathcal{F}} \binom{n}{|F|}^{-1}.$$

The Lubell function

Definition

Let $\mathcal F$ be a family of sets in the n-dimensional Boolean lattice, $\mathcal B_n$. The Lubell function of $\mathcal F$ is

$$\operatorname{Lu}(n,\mathcal{F}) = \operatorname{Lu}(\mathcal{F}) = \sum_{F \in \mathcal{F}} {n \choose |F|}^{-1}.$$

This function features prominently in some proofs of Sperner's theorem. In particular, we have the LYM (also called YBLM) inequality:

Theorem (Yamamoto, 1954; Meshalkin, 1963; Bollobás, 1965; Lubell, 1966)

If \mathcal{F} is an antichain, then

$$Lu(\mathcal{F}) \leq 1.$$

Definition

Let P be a nontrivial poset and let

$$\operatorname{Lu}^*(\mathcal{P}) \stackrel{\mathrm{def}}{=} \limsup_{n \to \infty} \left\{ \operatorname{Lu}(n, \mathcal{F}) : \mathcal{F} \text{ is } \mathcal{P}\text{-free and } \emptyset \in \mathcal{F} \right\}.$$

The quantity $Lu^*(\mathcal{P})$ is integral to our Key Lemma 1:

Definition

Let \mathcal{P} be a nontrivial poset and let

$$\operatorname{Lu}^*(\mathcal{P}) \stackrel{\mathrm{def}}{=} \limsup_{n \to \infty} \left\{ \operatorname{Lu}(n, \mathcal{F}) : \mathcal{F} \text{ is } \mathcal{P}\text{-free and } \emptyset \in \mathcal{F} \right\}.$$

The quantity $\mathrm{Lu}^*(\mathcal{P})$ is integral to our Key Lemma 1:

Lemma (Griggs-Li-Lu, 2012)

Let \mathcal{P} be a nontrivial poset and let \mathcal{F} be a \mathcal{P} -free family in the n-dimensional Boolean lattice, \mathcal{B}_n . Then,

$$|\mathcal{F}| \leq \left(\operatorname{Lu}^*(\mathcal{P}) + o(1)\right) \binom{n}{\lfloor n/2 \rfloor}.$$

Definition

Let \mathcal{P} be a nontrivial poset and let

$$\operatorname{Lu}^*(\mathcal{P}) \stackrel{\mathrm{def}}{=} \limsup_{n \to \infty} \left\{ \operatorname{Lu}(n, \mathcal{F}) : \mathcal{F} \text{ is } \mathcal{P}\text{-free and } \emptyset \in \mathcal{F} \right\}.$$

The quantity $\mathrm{Lu}^*(\mathcal{P})$ is integral to our Key Lemma 1:

Lemma (Griggs-Li-Lu, 2012)

Let \mathcal{P} be a nontrivial poset and let \mathcal{F} be a \mathcal{P} -free family in the n-dimensional Boolean lattice, \mathcal{B}_n . Then,

$$|\mathcal{F}| \leq \left(\operatorname{Lu}^*(\mathcal{P}) + o(1)\right) \binom{n}{\lfloor n/2 \rfloor}.$$

So, it suffices to upper bound Lubell functions for \mathcal{P} -free families that CONTAIN THE EMPTYSET.

Recall that for the diamond poset, there is a trivial lower bound.

Proposition

$$\operatorname{La}(n,\lozenge) \geq \Sigma(n,2) \sim 2 \binom{n}{\lfloor n/2 \rfloor}.$$

Recall that for the diamond poset, there is a trivial lower bound.

Proposition

$$\operatorname{La}(n,\lozenge) \geq \Sigma(n,2) \sim 2 \binom{n}{\lfloor n/2 \rfloor}.$$

Key Lemma 1 reduces to the following for $\mathcal{P} = \Diamond$:

Lemma (Key 1: Griggs-Li-Lu, 2012)

Let \Diamond be the diamond poset and let \mathcal{F} be a diamond-free family in the n-dimensional Boolean lattice, \mathcal{B}_n . Then,

$$|\mathcal{F}| \leq (\operatorname{Lu}^*(\lozenge) + o(1)) \binom{n}{\lfloor n/2 \rfloor},$$

Key Lemma 1 reduces to the following for $\mathcal{P} = \Diamond$:

Lemma (Key 1: Griggs-Li-Lu, 2012)

Let \Diamond be the diamond poset and let \mathcal{F} be a diamond-free family in the n-dimensional Boolean lattice, \mathcal{B}_n . Then,

$$|\mathcal{F}| \leq (\operatorname{Lu}^*(\lozenge) + o(1)) \binom{n}{\lfloor n/2 \rfloor},$$

Unfortunately, we cannot use this to tighten the bound further.

Proposition (Griggs-Li-Lu, 2012)

For every $n \ge 4$, there are at least two nonisomorphic \lozenge -free families, $\mathcal{F} \subseteq \mathcal{B}_n$ with

$$Lu(\mathcal{F}) = 2 + \frac{1}{n(n-1)} \left| \frac{n^2}{4} \right| \sim 2.25.$$

Key Lemma 1 reduces to the following for $\mathcal{P} = \Diamond$:

Lemma (Key 1: Griggs-Li-Lu, 2012)

Let \Diamond be the diamond poset and let \mathcal{F} be a diamond-free family in the n-dimensional Boolean lattice, \mathcal{B}_n . Then,

$$|\mathcal{F}| \leq \left(\mathrm{Lu}^*(\lozenge) + o(1)\right) \binom{n}{\lfloor n/2 \rfloor},$$

Proposition (Griggs-Li-Lu, 2012)

For every $n \geq 4$, there are at least two nonisomorphic \lozenge -free families, $\mathcal{F} \subseteq \mathcal{B}_n$ with

$$Lu(\mathcal{F}) = 2 + \frac{1}{n(n-1)} \left| \frac{n^2}{4} \right| \sim 2.25.$$

Our goal is to show that $Lu^*(\lozenge) = 2.25$.

Lemma (Key 2)

There is a function f(n, v, G) such that, for every \lozenge -free family \mathcal{F} , in \mathcal{B}_n , with $\emptyset \in \mathcal{F}$, there is a graph G on $v \le n$ vertices such that

$$Lu(\mathcal{F}) \leq 2 + f(n, v, G)$$

Lemma (Key 2)

There is a function f(n, v, G) such that, for every \lozenge -free family \mathcal{F} , in \mathcal{B}_n , with $\emptyset \in \mathcal{F}$, there is a graph G on $v \le n$ vertices such that

$$Lu(\mathcal{F}) \leq 2 + f(n, v, G)$$

$$:= 2 + \frac{2\alpha_1(G) - 2\alpha_2(G)}{n(n-1)(n-2)} + \frac{6\beta_0(G)}{n(n-1)(n-2)(n-3)}$$

- $\alpha_i(G)$ is the # of triples that induce exactly i edges, i = 0, 1, 2, 3,
- $\beta_0(G)$ is the # of quadruples that induce exactly 0 edges,

Lemma (Key 2)

There is a function f(n, v, G) such that, for every \lozenge -free family \mathcal{F} , in \mathcal{B}_n , with $\emptyset \in \mathcal{F}$, there is a graph G on $v \le n$ vertices such that

$$Lu(\mathcal{F}) \leq 2 + f(n, v, G)$$

$$:= 2 + \frac{2\alpha_1(G) - 2\alpha_2(G)}{n(n-1)(n-2)} + \frac{6\beta_0(G)}{n(n-1)(n-2)(n-3)} + \cdots$$

$$+ \sum_{w \in W} \left[\frac{|X_w| - |Y_w|}{n(n-1)} + \frac{4\overline{e}(Y_w) - 2\overline{e}(X_w)}{n(n-1)(n-2)} \right],$$

- $\alpha_i(G)$ is the # of triples that induce exactly i edges, i = 0, 1, 2, 3,
- $\beta_0(G)$ is the # of quadruples that induce exactly 0 edges,
- W = [n] V(G),
- (X_w, Y_w) is a partition of V(G), $\forall w (X_w, Y_w \text{ could be empty})$
- $\overline{e}(S)$ is the number of nonedges induced by $S \subseteq V(G)$.

Definition

$$f(n, v, G) := \frac{2\alpha_1(G) - 2\alpha_2(G)}{n(n-1)(n-2)} + \frac{6\beta_0(G)}{n(n-1)(n-2)(n-3)} + \sum_{w \in W} \left[\frac{|X_w| - |Y_w|}{n(n-1)} + \frac{4\overline{e}(Y_w) - 2\overline{e}(X_w)}{n(n-1)(n-2)} \right].$$

Definition

$$f(n, v, G) := \frac{2\alpha_1(G) - 2\alpha_2(G)}{n(n-1)(n-2)} + \frac{6\beta_0(G)}{n(n-1)(n-2)(n-3)} + \sum_{w \in W} \left[\frac{|X_w| - |Y_w|}{n(n-1)} + \frac{4\overline{e}(Y_w) - 2\overline{e}(X_w)}{n(n-1)(n-2)} \right].$$

Our goal is to show that, for any $v \le n$ and any G on v vertices, $f(n, v, G) \le 0.25 + o(1)$.

Definition

$$f(n, v, G) := \frac{2\alpha_1(G) - 2\alpha_2(G)}{n(n-1)(n-2)} + \frac{6\beta_0(G)}{n(n-1)(n-2)(n-3)} + \sum_{w \in W} \left[\frac{|X_w| - |Y_w|}{n(n-1)} + \frac{4\overline{e}(Y_w) - 2\overline{e}(X_w)}{n(n-1)(n-2)} \right].$$

Our goal is to show that, for any $v \le n$ and any G on v vertices,

$$f(n, v, G) \leq 0.25 + o(1).$$

It turns out to be relatively easy to verify that

Proposition

$$\max\{f(n, v, G) : v < 2n/3\} = \frac{1}{n(n-1)} \left\lfloor \frac{n^2}{4} \right\rfloor \le \frac{1}{4} + \frac{1}{4(n-1)}.$$

The maximum occurs only if $v = \{ |n/2|, \lceil n/2 \rceil \}$ and $G = K_v$.

Definition

$$f(n, v, G) := \frac{2\alpha_{1}(G) - 2\alpha_{2}(G)}{n(n-1)(n-2)} + \frac{6\beta_{0}(G)}{n(n-1)(n-2)(n-3)} + \sum_{w \in W} \left[\frac{|X_{w}| - |Y_{w}|}{n(n-1)} + \frac{4\overline{e}(Y_{w}) - 2\overline{e}(X_{w})}{n(n-1)(n-2)} \right].$$

It turns out to be relatively easy to verify that

Proposition

$$\max\{f(n, v, G) : v < 2n/3\} = \frac{1}{n(n-1)} \left\lfloor \frac{n^2}{4} \right\rfloor \le \frac{1}{4} + \frac{1}{4(n-1)}.$$

The maximum occurs only if $v = \{\lfloor n/2 \rfloor, \lceil n/2 \rceil\}$ and $G = K_v$.

So, we have to consider $v \ge 2n/3$. For purposes of illustration, let's eliminate the summation term by assuming v = n.

The simplified problem

Definition

$$g(n,G) := \frac{2\alpha_1(G) - 2\alpha_2(G)}{n(n-1)(n-2)} + \frac{6\beta_0(G)}{n(n-1)(n-2)(n-3)}$$

Definition

$$g(n,G) := \frac{2\alpha_1(G) - 2\alpha_2(G)}{n(n-1)(n-2)} + \frac{6\beta_0(G)}{n(n-1)(n-2)(n-3)}$$
$$= \frac{1}{3} \frac{\alpha_1(G) - \alpha_2(G)}{\binom{n}{2}} + \frac{1}{4} \frac{\beta_0(G)}{\binom{n}{4}}$$

Definition

$$g(n,G) := \frac{2\alpha_1(G) - 2\alpha_2(G)}{n(n-1)(n-2)} + \frac{6\beta_0(G)}{n(n-1)(n-2)(n-3)}$$

$$= \frac{1}{3} \frac{\alpha_1(G) - \alpha_2(G)}{\binom{n}{3}} + \frac{1}{4} \frac{\beta_0(G)}{\binom{n}{4}}$$

$$= \frac{1}{\binom{n}{4}} \sum_{H:|V(H)|=4} d(H),$$

where

$$d(H) = \frac{1}{3} \frac{\alpha_1(H)}{4} - \frac{1}{3} \frac{\alpha_2(H)}{4} + \frac{1}{4} \frac{\beta_0(H)}{1}.$$

Definition

$$g(n,G) = \frac{1}{\binom{n}{4}} \sum_{H:|V(H)|=4} d(H),$$

where

$$d(H) = \frac{1}{3} \frac{\alpha_1(H)}{4} - \frac{1}{3} \frac{\alpha_2(H)}{4} + \frac{1}{4} \frac{\beta_0(H)}{1}.$$

Clearly, $g(n, G) \le \max\{d(H) : |V(H)| = 4\}.$

Definition

$$g(n,G) = \frac{1}{\binom{n}{4}} \sum_{H:|V(H)|=4} d(H),$$

where

$$d(H) = \frac{1}{3} \frac{\alpha_1(H)}{4} - \frac{1}{3} \frac{\alpha_2(H)}{4} + \frac{1}{4} \frac{\beta_0(H)}{1}.$$

Clearly,
$$g(n, G) \le \max\{d(H) : |V(H)| = 4\}.$$

Unfortunately,
$$d\left(\mathbf{I}\;\mathbf{I}\right)=\frac{1}{3}.$$

The correction factor

Suppose we can find a function c(H) such that $\frac{1}{\binom{n}{4}} \sum_{H} c(H) + o(1) \geq 0$.

The correction factor

Suppose we can find a function c(H) such that $\frac{1}{\binom{n}{4}} \sum_{H} c(H) + o(1) \geq 0$.

Then,

$$g(n,G) = \frac{1}{\binom{n}{4}} \sum_{H} d(H)$$

$$\leq \frac{1}{\binom{n}{4}} \sum_{H} (d(H) + c(H)) + o(1)$$

$$\leq \max\{d(H) + c(H) : |V(H)| = 4\} + o(1).$$

The correction factor

Suppose we can find a function c(H) such that $\frac{1}{\binom{n}{4}} \sum_{H} c(H) + o(1) \ge 0$.

Then,

$$g(n,G) = \frac{1}{\binom{n}{4}} \sum_{H} d(H)$$

$$\leq \frac{1}{\binom{n}{4}} \sum_{H} (d(H) + c(H)) + o(1)$$

$$\leq \max\{d(H) + c(H) : |V(H)| = 4\} + o(1).$$

How do we find such a c?

First we set up flags

Given two nonadjacent vertices "1" and "2", the probability that a random vertex is adjacent to "1" and nonadjacent to "2" is denoted:

First we set up flags

Given two nonadjacent vertices "1" and "2", the probability that a random vertex is adjacent to "1" and nonadjacent to "2" is denoted:

Given two nonadjacent vertices "1" and "2", the probability that a random vertex is adjacent to "2" and nonadjacent to "1" is denoted:

First we set up flags

Given two nonadjacent vertices "1" and "2", the probability that a random vertex is adjacent to "1" and nonadjacent to "2" is denoted:

1 2

Given two nonadjacent vertices "1" and "2", the probability that a random vertex is adjacent to "2" and nonadjacent to "1" is denoted:

$$-o(1)$$

$$\begin{array}{ccc} & 0 & 0 \\ -1 & 0 \end{array}$$

The matrices are positive semidefinite.

The matrices are positive semidefinite, hence

$$\frac{1}{4} \sum_{\gamma} \begin{bmatrix} \ddots \\ \ddots \\ \ddots \\ \ddots \end{bmatrix}^{T} \begin{bmatrix} & & & \\ & 1 & -1 \\ & -1 & 1 \end{bmatrix} \begin{bmatrix} \ddots \\ \ddots \\ \ddots \\ \ddots \end{bmatrix} + \frac{1}{4} \sum_{\gamma} \begin{bmatrix} \ddots 1 \\ \ddots \\ \ddots \\ \ddots \end{bmatrix}^{T} \begin{bmatrix} & 1 & & -1 \\ & \ddots \\ & \ddots \\ & & \end{bmatrix} \begin{bmatrix} \ddots \\ \ddots \\ \ddots \\ \ddots \end{bmatrix} \ge 0$$

The matrices are positive semidefinite, hence

$$\frac{1}{4} \sum_{\gamma} \begin{bmatrix} \ddots \\ \ddots \\ \ddots \\ \ddots \end{bmatrix}^{\prime} \begin{bmatrix} & & & & \\ & 1 & -1 & \\ & -1 & & 1 \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{pmatrix} + \frac{1}{4} \sum_{\gamma} \begin{bmatrix} \ddots \\ 1 \\ \ddots \\ 4 \end{bmatrix}^{\prime} \begin{bmatrix} & 1 & & -1 \\ & & & \\ & \ddots \\ & & & \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix} \ge 0$$

$$\text{Lu}(\mathcal{F}) \le 2 + \frac{1}{\binom{n}{4}} \sum_{H} (d(H) + c(H)) + o(1)$$

The matrices are positive semidefinite, hence

$$\frac{1}{4} \sum_{\gamma \neq} \begin{bmatrix} \vdots \\ \vdots \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ -1 & 1 \end{bmatrix} + \frac{1}{4} \sum_{\gamma} \begin{bmatrix} \vdots \\ 1 \\ 4 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ \vdots \\ 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ 1 \\ \vdots \\ 1 \end{pmatrix} \ge 0$$

$$\text{Lu}(\mathcal{F}) \le 2 + \frac{1}{\binom{n}{4}} \sum_{H} (d(H) + c(H)) + o(1)$$

Recall
$$d\left(\mathbf{I} \mathbf{I}\right) = \frac{1}{3}$$
.

The matrices are positive semidefinite, hence

$$\frac{1}{4} \sum_{\not\sim} \begin{bmatrix} \ddots \\ \ddots \\ \ddots \\ \ddots \end{bmatrix}^{\prime} \begin{bmatrix} & & & \\ & 1 & -1 \\ & -1 & 1 \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \ddots \end{bmatrix} + \frac{1}{4} \sum_{\sim} \begin{bmatrix} \ddots \\ 1 \\ \ddots \\ 1 \end{bmatrix}^{\prime} \begin{bmatrix} & 1 & & -1 \\ & & & \\ & \ddots \\ & & & \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \ddots \end{bmatrix} \ge 0$$

$$\text{Lu}(\mathcal{F}) \le 2 + \frac{1}{\binom{n}{4}} \sum_{H} (d(H) + c(H)) + o(1)$$

Recall
$$d\left(\mathbf{I} \mathbf{I}\right) = \frac{1}{3}$$
.

Since
$$c\left(\frac{1}{4}\right) = -\frac{1}{4}\left(\frac{1}{3}\right) - \frac{1}{4}\left(\frac{1}{3}\right) + \frac{1}{4}\left(\frac{1}{3}\right) = -\frac{1}{12}$$
,

The matrices are positive semidefinite, hence

$$\frac{1}{4} \sum_{\not\sim} \begin{bmatrix} \ddots \\ \ddots \\ \ddots \end{bmatrix}^T \begin{bmatrix} & & & \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} \ddots \\ & & \\ & & \\ & & \\ & & \end{bmatrix} + \frac{1}{4} \sum_{\sim} \begin{bmatrix} \ddots \\ & \\ & \\ & \\ & & \end{bmatrix}^T \begin{bmatrix} & & & -1 \\ & & & \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} \ddots \\ & \\ & \\ & \\ & & \end{bmatrix} \ge 0$$

$$\text{Lu}(\mathcal{F}) \le 2 + \frac{1}{\binom{n}{4}} \sum_{H} (d(H) + c(H)) + o(1)$$

Recall
$$d\left(\mathbf{I} \mathbf{I}\right) = \frac{1}{3}$$
.

Since
$$c\left(\frac{1}{4}\right) = -\frac{1}{4}\left(\frac{1}{3}\right) - \frac{1}{4}\left(\frac{1}{3}\right) + \frac{1}{4}\left(\frac{1}{3}\right) = -\frac{1}{12}$$
,

The matrices are positive semidefinite, hence

$$\frac{1}{4} \sum_{\not\sim} \begin{bmatrix} \ddots \\ \ddots \\ \ddots \\ \ddots \end{bmatrix}^T \begin{bmatrix} & & & \\ &$$

$$\text{Lu}(\mathcal{F}) \le 2 + \frac{1}{\binom{n}{4}} \sum_{H} (d(H) + c(H)) + o(1)$$

Recall
$$d\left(\mathbf{I} \mathbf{I}\right) = \frac{1}{3}$$
.

Since
$$c\left(\frac{1}{4}\right) = -\frac{1}{4}\left(\frac{1}{3}\right) - \frac{1}{4}\left(\frac{1}{3}\right) + \frac{1}{4}\left(\frac{1}{3}\right) = -\frac{1}{12}$$
,

The matrices are positive semidefinite, hence

$$\frac{1}{4} \sum_{\gamma \leftarrow} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \zeta \end{bmatrix}^{\prime} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix} + \frac{1}{4} \sum_{\gamma \leftarrow} \begin{bmatrix} \cdot \mathbf{I} \\ \cdot \mathbf{I} \\ \cdot \mathbf{I} \\ \cdot \mathbf{I} \end{bmatrix}^{\prime} \begin{bmatrix} 1 & -1 \\ \cdot \mathbf{I} \\ \cdot \mathbf{I} \\ \cdot \mathbf{I} \end{bmatrix} \geq 0$$

$$\text{Lu}(\mathcal{F}) \le 2 + \frac{1}{\binom{n}{4}} \sum_{H} (d(H) + c(H)) + o(1)$$

Recall
$$d\left(\mathbf{I} \mathbf{I}\right) = \frac{1}{3}$$
.

Since
$$c\left(\frac{1}{4}\right) = -\frac{1}{4}\left(\frac{1}{3}\right) - \frac{1}{4}\left(\frac{1}{3}\right) + \frac{1}{4}\left(\frac{1}{3}\right) = -\frac{1}{12}$$
,

The matrices are positive semidefinite, hence

$$\frac{1}{4} \sum_{\gamma} \begin{bmatrix} \ddots \\ \ddots \\ \ddots \\ \ddots \end{bmatrix}^{\prime} \begin{bmatrix} & & & & \\ & 1 & -1 \\ & -1 & 1 \end{bmatrix} \begin{bmatrix} \vdots \\ \ddots \\ \vdots \\ \ddots \end{bmatrix} + \frac{1}{4} \sum_{\gamma} \begin{bmatrix} \ddots 1 \\ 1 \\ \ddots \\ 1 \end{bmatrix}^{\prime} \begin{bmatrix} & 1 & & -1 \\ & & & \\ & \ddots \\ & & & \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \ddots \end{bmatrix} \ge 0$$

$$\text{Lu}(\mathcal{F}) \le 2 + \frac{1}{\binom{n}{4}} \sum_{H} (d(H) + c(H)) + o(1)$$

Recall
$$d\left(\mathbf{I} \mathbf{I}\right) = \frac{1}{3}$$
.

Since
$$c\left(\frac{1}{4}\right) = -\frac{1}{4}\left(\frac{1}{3}\right) - \frac{1}{4}\left(\frac{1}{3}\right) + \frac{1}{4}\left(\frac{1}{3}\right) = -\frac{1}{12}$$

$$d\left(\mathbf{I}\ \mathbf{I}\right)+c\left(\mathbf{I}\ \mathbf{I}\right)=rac{1}{4}.$$

So,

$$\operatorname{Lu}(\mathcal{F}) \leq 2 + \frac{1}{\binom{n}{4}} \sum_{H} \left(d(H) + c(H) \right) + o(1)$$

Recall
$$d\left(\mathbf{I} \mathbf{I}\right) = \frac{1}{3}$$
.

Since
$$c\left(\mathbf{I}\;\mathbf{I}\right)=-\frac{1}{4}\left(\frac{1}{3}\right)\;-\frac{1}{4}\left(\frac{1}{3}\right)\;+\frac{1}{4}\left(\frac{1}{3}\right)\;=-\frac{1}{12},$$

$$d\left(\mathbf{I}\;\mathbf{I}\right)+c\left(\mathbf{I}\;\mathbf{I}\right)=\frac{1}{4}.$$

This choice of matrices makes $d(H) + c(H) \le \frac{1}{4}$ for every H and equality if H is a subgraph of 2 disjoint cliques.

So,

$$\mathrm{Lu}(\mathcal{F}) \leq 2 + \frac{1}{\binom{n}{4}} \sum_{H} \left(d(H) + c(H) \right) + o(1) \leq 2 + \frac{1}{4} + o(1).$$

$$d\left(\mathbf{I}\ \mathbf{I}\right)+c\left(\mathbf{I}\ \mathbf{I}\right)=\frac{1}{4}.$$

This choice of matrices makes $d(H) + c(H) \le \frac{1}{4}$ for every H and equality if H is a subgraph of 2 disjoint cliques.

Hence $g(n, G) \leq \frac{1}{4} + o(1)$, the objective.

Theorem (Kramer-M.-Young, 2012)

Let $La(n, \lozenge)$ denote the size of the largest family in \mathcal{B}_n , which has no "diamond" as a (weak) subposet. Then,

$$\operatorname{La}(n,\lozenge) \leq (2.25 + o(1)) \binom{n}{\lfloor n/2 \rfloor}.$$

Suppose we restrict ourselves to \lozenge -free families \mathcal{F} that exist in only three layers. That is, the subsets of [n] in it only have three different sizes.

Theorem (Kramer-M.-Young, 2012)

Let $\operatorname{La}(n, \lozenge)$ denote the size of the largest family in \mathcal{B}_n , which has no "diamond" as a (weak) subposet. Then,

$$\operatorname{La}(n,\lozenge) \leq (2.25 + o(1)) \binom{n}{\lfloor n/2 \rfloor}.$$

Suppose we restrict ourselves to \lozenge -free families \mathcal{F} that exist in only three layers. That is, the subsets of [n] in it only have three different sizes.

Theorem

If \mathcal{F} is a \lozenge -free family in three layers of \mathcal{B}_n , then

- $|\mathcal{F}| \le (2.20711 + o(1)) \binom{n}{\lfloor n/2 \rfloor}$ [Axenovich-Manske-M., 2012]
- $|\mathcal{F}| \leq (2.15471 + o(1)) \binom{n}{\lfloor n/2 \rfloor}$ [Manske-Shen, 2012]
- $|\mathcal{F}| \le (2.15121 + o(1)) \binom{n}{\lfloor n/2 \rfloor}$ [Balogh-Hu-Lidický-Liu, 2012]

Theorem

If \mathcal{F} is a \lozenge -free family in three layers of \mathcal{B}_n , then

- $|\mathcal{F}| \le (2.20711 + o(1)) \binom{n}{\lfloor n/2 \rfloor}$ [Axenovich-Manske-M., 2012]
- $|\mathcal{F}| \le (2.15471 + o(1)) \binom{n}{\lfloor n/2 \rfloor}$ [Manske-Shen, 2012]
- $|\mathcal{F}| \leq (2.15121 + o(1)) \binom{n}{\lfloor n/2 \rfloor}$ [Balogh-Hu-Lidický-Liu, 2012]

Theorem

If \mathcal{F} is a \lozenge -free family in three layers of \mathcal{B}_n , then

- $|\mathcal{F}| \leq (2.20711 + o(1)) \binom{n}{\lfloor n/2 \rfloor}$ [Axenovich-Manske-M., 2012]
- $|\mathcal{F}| \leq (2.15471 + o(1)) \binom{n}{\lfloor n/2 \rfloor}$ [Manske-Shen, 2012]

• The first two use a method that involves something similar to the chain counting arguments that gave the general bound of 2.25.

Theorem

If \mathcal{F} is a \lozenge -free family in three layers of \mathcal{B}_n , then

- $|\mathcal{F}| \leq (2.15121 + o(1)) \binom{n}{\lfloor n/2 \rfloor}$ [Balogh-Hu-Lidický-Liu, 2012]
- The first two use a method that involves something similar to the chain counting arguments that gave the general bound of 2.25.
- The last one uses flag algebras more-or-less directly.

Theorem

If \mathcal{F} is a \lozenge -free family in three layers of \mathcal{B}_n , then

$$ullet$$
 $|\mathcal{F}| \leq \left(1 + rac{2\sqrt{3}}{3} + o(1)
ight) inom{n}{\lfloor n/2 \rfloor}$ [Manske-Shen, 2012]

- The first two use a method that involves something similar to the chain counting arguments that gave the general bound of 2.25.
- The last one uses flag algebras more-or-less directly.
- Let us focus on the slightly higher Manske-Shen bound.

Manske-Shen method

Let \mathcal{F} be a \lozenge -free family in three layers of \mathcal{B}_n .

We observe that we can ensure that the three layers are consecutive and the sizes of the sets in those layers are $\approx n/2$.

Therefore, $|\mathcal{F}| \approx \operatorname{Lu}(\mathcal{F})\binom{n}{\lfloor n/2 \rfloor}$.

Manske-Shen method

Let \mathcal{F} be a \lozenge -free family in three layers of \mathcal{B}_n .

We observe that we can ensure that the three layers are consecutive and the sizes of the sets in those layers are $\approx n/2$.

Therefore,
$$|\mathcal{F}| \approx \operatorname{Lu}(\mathcal{F})\binom{n}{\lfloor n/2 \rfloor}$$
.

Moreover, $\mathcal{F} = \mathcal{S} \stackrel{.}{\cup} \mathcal{T} \stackrel{.}{\cup} \mathcal{U}$, where

- $ullet \, \mathcal{U}$ is in the top layer,
- ullet ${\cal T}$ is in the middle layer, and
- ullet ${\cal S}$ is in the bottom layer.

$$\mathcal{F} = \mathcal{S} \mathrel{\dot{\cup}} \mathcal{T} \mathrel{\dot{\cup}} \mathcal{U}$$

- For $Y \in \mathcal{T}$, let $\check{f}(Y)$ denote the proportion of chains from \emptyset to Y that have a member of S.
- For $Y \in \mathcal{T}$, let $\check{g}(Y)$ denote the proportion of chains from Y to [n] that have a member of \mathcal{U} .

These are duals of other functions f and g which we don't need to introduce, but we'll keep the notation.

$$\mathcal{F} = \mathcal{S} \mathrel{\dot{\cup}} \mathcal{T} \mathrel{\dot{\cup}} \mathcal{U}$$

- For $Y \in \mathcal{T}$, let $\check{f}(Y)$ denote the proportion of chains from \emptyset to Y that have a member of S.
- For $Y \in \mathcal{T}$, let $\check{g}(Y)$ denote the proportion of chains from Y to [n] that have a member of \mathcal{U} .

These are duals of other functions f and g which we don't need to introduce, but we'll keep the notation. More notation:

$$\operatorname{Lu}(\mathcal{F}) = 2 + \sum_{Y \in \mathcal{T}} \binom{n}{|Y|}^{-1} \left(\widecheck{f}(Y) + \widecheck{g}(Y) - 1 \right)$$

$$\mathcal{F} = \mathcal{S} \mathrel{\dot{\cup}} \mathcal{T} \mathrel{\dot{\cup}} \mathcal{U}$$

- For $Y \in \mathcal{T}$, let $\check{f}(Y)$ denote the proportion of chains from \emptyset to Y that have a member of S.
- For $Y \in \mathcal{T}$, let $\check{g}(Y)$ denote the proportion of chains from Y to [n] that have a member of \mathcal{U} .

These are duals of other functions f and g which we don't need to introduce, but we'll keep the notation. More notation:

$$\operatorname{Lu}(\mathcal{F}) = 2 + \sum_{Y \in \mathcal{T}} {n \choose |Y|}^{-1} \left(\check{f}(Y) + \check{g}(Y) - 1 \right)$$
$$= 2 + \sum_{Y \in \mathcal{T}} \left(\check{f}(Y) + \check{g}(Y) - 1 \right)$$

$$\mathcal{F} = \mathcal{S} \ \dot{\cup} \ \mathcal{T} \ \dot{\cup} \ \mathcal{U}$$

- For $Y \in \mathcal{T}$, let $\check{f}(Y)$ denote the proportion of chains from \emptyset to Y that have a member of S.
- For $Y \in \mathcal{T}$, let $\check{g}(Y)$ denote the proportion of chains from Y to [n] that have a member of \mathcal{U} .

These are duals of other functions f and g which we don't need to introduce, but we'll keep the notation. More notation:

$$\begin{aligned} \operatorname{Lu}(\mathcal{F}) &= 2 + \sum_{Y \in \mathcal{T}} \binom{n}{|Y|}^{-1} \left(\check{f}(Y) + \check{g}(Y) - 1 \right) \\ &= 2 + \sum_{Y \in \mathcal{T}} \left(\check{f}(Y) + \check{g}(Y) - 1 \right) \\ &= 2 + \sum_{Y \in \mathcal{T}} \check{R}(Y) \end{aligned}$$

Cauchy-Schwarz via Manske-Shen

Let
$$\mathcal{T}_1 = \Big\{ Y \in \mathcal{T} : \breve{R}(Y) \geq 0 \Big\}.$$

The proof begins with a quick application of Cauchy-Schwarz.

$$\left(\sum_{\mathbf{Y}\in\mathcal{T}}2\right)^2\leq\left(\sum_{\mathbf{Y}\in\mathcal{T}}(1-\breve{R}(\mathbf{Y}))\right) \qquad \times\left(\sum_{\mathbf{Y}\in\mathcal{T}}\frac{4}{1-\breve{R}(\mathbf{Y})}\right)$$

Cauchy-Schwarz via Manske-Shen

Let
$$\mathcal{T}_1 = \Big\{ Y \in \mathcal{T} : \breve{R}(Y) \geq 0 \Big\}.$$

The proof begins with a quick application of Cauchy-Schwarz. Then, we use a convenient lemma involving Lu(S) and Lu(U).

$$\left(\sum_{\mathbf{Y}\in\mathcal{T}}2\right)^2\leq\left(\sum_{\mathbf{Y}\in\mathcal{T}}(1-\breve{R}(\mathbf{Y}))\right) \qquad \times\left(\sum_{\mathbf{Y}\in\mathcal{T}}\frac{4}{1-\breve{R}(\mathbf{Y})}\right)$$

$$4(\operatorname{Lu}(\mathcal{T}_1))^2 \leq (\operatorname{Lu}(\mathcal{T}_1) - (\operatorname{Lu}(\mathcal{F}) - 2)) \quad \times (\operatorname{Lu}(\mathcal{S}) + \operatorname{Lu}(\mathcal{U}) + 2\operatorname{Lu}(\mathcal{T}_1))$$

Let
$$\mathcal{T}_1 = \Big\{ Y \in \mathcal{T} : \breve{R}(Y) \geq 0 \Big\}.$$

The proof begins with a quick application of Cauchy-Schwarz. Then, we use a convenient lemma involving Lu(S) and Lu(U).

$$\left(\sum_{\mathbf{Y}\in\mathcal{T}}2\right)^2\leq\left(\sum_{\mathbf{Y}\in\mathcal{T}}(1-\breve{R}(\mathbf{Y}))\right) \qquad \times\left(\sum_{\mathbf{Y}\in\mathcal{T}}\frac{4}{1-\breve{R}(\mathbf{Y})}\right)$$

$$4(\operatorname{Lu}(\mathcal{T}_1))^2 \leq (\operatorname{Lu}(\mathcal{T}_1) - (\operatorname{Lu}(\mathcal{F}) - 2)) \quad \times (\operatorname{Lu}(\mathcal{S}) + \operatorname{Lu}(\mathcal{U}) + 2\operatorname{Lu}(\mathcal{T}_1))$$

$$0 \leq \left(\mathrm{Lu}(\mathcal{T}_1) - \left(\mathrm{Lu}(\mathcal{F}) - 2\right)\right) \times \left(\mathrm{Lu}(\mathcal{F}) - \mathrm{Lu}(\mathcal{T}) + 2\mathrm{Lu}(\mathcal{T}_1)\right) - 4(\mathrm{Lu}(\mathcal{T}_1))^2$$

Let
$$\mathcal{T}_1 = \Big\{ Y \in \mathcal{T} : \breve{R}(Y) \geq 0 \Big\}.$$

The proof begins with a quick application of Cauchy-Schwarz. Then, we use a convenient lemma involving Lu(S) and Lu(U).

$$\left(\sum_{\mathbf{Y}\in\mathcal{T}}2\right)^2\leq\left(\sum_{\mathbf{Y}\in\mathcal{T}}(1-\breve{R}(Y))\right) \qquad \times\left(\sum_{\mathbf{Y}\in\mathcal{T}}\frac{4}{1-\breve{R}(Y)}\right)$$

$$4(\operatorname{Lu}(\mathcal{T}_1))^2 \leq (\operatorname{Lu}(\mathcal{T}_1) - (\operatorname{Lu}(\mathcal{F}) - 2)) \quad \times (\operatorname{Lu}(\mathcal{S}) + \operatorname{Lu}(\mathcal{U}) + 2\operatorname{Lu}(\mathcal{T}_1))$$

$$0 \leq (\operatorname{Lu}(\mathcal{T}_1) - \operatorname{Lu}(\mathcal{F}) + 2) \times (\operatorname{Lu}(\mathcal{F}) + \operatorname{Lu}(\mathcal{T}_1)) - 4(\operatorname{Lu}(\mathcal{T}_1))^2$$

Let
$$\mathcal{T}_1 = \Big\{ Y \in \mathcal{T} : \breve{R}(Y) \geq 0 \Big\}.$$

The proof begins with a quick application of Cauchy-Schwarz. Then, we use a convenient lemma involving Lu(S) and Lu(U).

$$4(\operatorname{Lu}(\mathcal{T}_1))^2 \leq \left(\operatorname{Lu}(\mathcal{T}_1) - \left(\operatorname{Lu}(\mathcal{F}) - 2\right)\right) \quad \times \left(\operatorname{Lu}(\mathcal{S}) + \operatorname{Lu}(\mathcal{U}) + 2\operatorname{Lu}(\mathcal{T}_1)\right)$$

$$\begin{split} 0 & \leq (\operatorname{Lu}(\mathcal{T}_1) - \operatorname{Lu}(\mathcal{F}) + 2) \times (\operatorname{Lu}(\mathcal{F}) + \operatorname{Lu}(\mathcal{T}_1)) - 4(\operatorname{Lu}(\mathcal{T}_1))^2 \\ & \leq -(\operatorname{Lu}(\mathcal{F}))^2 + 2\operatorname{Lu}(\mathcal{F}) - 3(\operatorname{Lu}(\mathcal{T}_1))^2 + 2\operatorname{Lu}(\mathcal{T}_1) \end{split}$$

Let
$$\mathcal{T}_1 = \Big\{ Y \in \mathcal{T} : \breve{R}(Y) \geq 0 \Big\}.$$

The proof begins with a quick application of Cauchy-Schwarz. Then, we use a convenient lemma involving Lu(S) and Lu(U).

$$4(\operatorname{Lu}(\mathcal{T}_1))^2 \leq \left(\operatorname{Lu}(\mathcal{T}_1) - \left(\operatorname{Lu}(\mathcal{F}) - 2\right)\right) \quad \times \left(\operatorname{Lu}(\mathcal{S}) + \operatorname{Lu}(\mathcal{U}) + 2\operatorname{Lu}(\mathcal{T}_1)\right)$$

$$\begin{split} 0 & \leq (\mathrm{Lu}(\mathcal{T}_1) - \mathrm{Lu}(\mathcal{F}) + 2) \times (\mathrm{Lu}(\mathcal{F}) + \mathrm{Lu}(\mathcal{T}_1)) - 4(\mathrm{Lu}(\mathcal{T}_1))^2 \\ & \leq -(\mathrm{Lu}(\mathcal{F}))^2 + 2\mathrm{Lu}(\mathcal{F}) - 3(\mathrm{Lu}(\mathcal{T}_1))^2 + 2\mathrm{Lu}(\mathcal{T}_1) \\ & \leq -(\mathrm{Lu}(\mathcal{F}))^2 + 2\mathrm{Lu}(\mathcal{F}) - 3(1/3)^2 + 2(1/3) \end{split}$$

Let
$$\mathcal{T}_1 = \Big\{ Y \in \mathcal{T} : \breve{R}(Y) \geq 0 \Big\}.$$

The proof begins with a quick application of Cauchy-Schwarz. Then, we use a convenient lemma involving Lu(S) and Lu(U).

$$4(\operatorname{Lu}(\mathcal{T}_1))^2 \leq \left(\operatorname{Lu}(\mathcal{T}_1) - \left(\operatorname{Lu}(\mathcal{F}) - 2\right)\right) \quad \times \left(\operatorname{Lu}(\mathcal{S}) + \operatorname{Lu}(\mathcal{U}) + 2\operatorname{Lu}(\mathcal{T}_1)\right)$$

$$\begin{split} 0 &\leq (\operatorname{Lu}(\mathcal{T}_1) - \operatorname{Lu}(\mathcal{F}) + 2) \times (\operatorname{Lu}(\mathcal{F}) + \operatorname{Lu}(\mathcal{T}_1)) - 4(\operatorname{Lu}(\mathcal{T}_1))^2 \\ &\leq -(\operatorname{Lu}(\mathcal{F}))^2 + 2\operatorname{Lu}(\mathcal{F}) - 3(\operatorname{Lu}(\mathcal{T}_1))^2 + 2\operatorname{Lu}(\mathcal{T}_1) \\ &\leq -(\operatorname{Lu}(\mathcal{F}))^2 + 2\operatorname{Lu}(\mathcal{F}) + 1/3 \end{split}$$

Let
$$\mathcal{T}_1 = \Big\{ Y \in \mathcal{T} : \breve{R}(Y) \geq 0 \Big\}.$$

The proof begins with a quick application of Cauchy-Schwarz. Then, we use a convenient lemma involving Lu(S) and Lu(U).

Simplifying,

$$\begin{split} 0 &\leq (\operatorname{Lu}(\mathcal{T}_1) - \operatorname{Lu}(\mathcal{F}) + 2) \times (\operatorname{Lu}(\mathcal{F}) + \operatorname{Lu}(\mathcal{T}_1)) - 4(\operatorname{Lu}(\mathcal{T}_1))^2 \\ &\leq -(\operatorname{Lu}(\mathcal{F}))^2 + 2\operatorname{Lu}(\mathcal{F}) - 3(\operatorname{Lu}(\mathcal{T}_1))^2 + 2\operatorname{Lu}(\mathcal{T}_1) \\ &\leq -(\operatorname{Lu}(\mathcal{F}))^2 + 2\operatorname{Lu}(\mathcal{F}) + 1/3 \end{split}$$

By the quadratic formula,

$$\mathrm{Lu}(\mathcal{F}) \leq \frac{3+2\sqrt{3}}{2} \approx 2.15471.$$

Can we exploit this technique to the general case?

$$\left(\sum_{\mathbf{Y}\in\mathcal{T}}2\right)^2\leq\left(\sum_{\mathbf{Y}\in\mathcal{T}}\frac{4}{1-\check{R}(\mathbf{Y})}\right) \qquad \qquad \times\left(\sum_{\mathbf{Y}\in\mathcal{T}}(1-\check{R}(\mathbf{Y}))\right)$$

$$4(\operatorname{Lu}(\mathcal{T}_1))^2 \leq (\operatorname{Lu}(\mathcal{S}) + \operatorname{Lu}(\mathcal{U}) + 2\operatorname{Lu}(\mathcal{T}_1)) \quad \times (\operatorname{Lu}(\mathcal{T}_1) - (\operatorname{Lu}(\mathcal{F}) - 2))$$

To generalize this to a chain counting argument in the general case (i.e., non-3-layer case), there are two problems:

Can we exploit this technique to the general case?

$$\left(\sum_{\mathbf{Y}\in\mathcal{T}}2\right)^{2}\leq\left(\sum_{\mathbf{Y}\in\mathcal{T}}\frac{4}{1-\breve{R}(\mathbf{Y})}\right) \qquad \times\left(\sum_{\mathbf{Y}\in\mathcal{T}}(1-\breve{R}(\mathbf{Y}))\right)$$

$$4(\operatorname{Lu}(\mathcal{T}_1))^2 \leq \left(\operatorname{Lu}(\mathcal{S}) + \operatorname{Lu}(\mathcal{U}) + 2\operatorname{Lu}(\mathcal{T}_1)\right) \quad \times \left(\operatorname{Lu}(\mathcal{T}_1) - \left(\operatorname{Lu}(\mathcal{F}) - 2\right)\right)$$

To generalize this to a chain counting argument in the general case (i.e., non-3-layer case), there are two problems:

ullet The inequality with $\mathrm{Lu}(\mathcal{S})$ and $\mathrm{Lu}(\mathcal{U})$ is more complicated. Hence,

Can we exploit this technique to the general case?

$$\left(\sum_{\mathbf{Y}\in\mathcal{T}}2\right)^{2}\leq\left(\sum_{\mathbf{Y}\in\mathcal{T}}\frac{4}{1-\breve{R}(\mathbf{Y})}\right) \qquad \times\left(\sum_{\mathbf{Y}\in\mathcal{T}}(1-\breve{R}(\mathbf{Y}))\right)$$

$$4(\operatorname{Lu}(\mathcal{T}_1))^2 \leq (\operatorname{Lu}(\mathcal{S}) + \operatorname{Lu}(\mathcal{U}) + 2\operatorname{Lu}(\mathcal{T}_1)) \quad \times (\operatorname{Lu}(\mathcal{T}_1) - (\operatorname{Lu}(\mathcal{F}) - 2))$$

To generalize this to a chain counting argument in the general case (i.e., non-3-layer case), there are two problems:

- ullet The inequality with $\mathrm{Lu}(\mathcal{S})$ and $\mathrm{Lu}(\mathcal{U})$ is more complicated. Hence,
- $\breve{R}(Y)$ is **much** more complicated.

Can we exploit this technique to the general case?

$$\left(\sum_{\mathbf{Y}\in\mathcal{T}}2\right)^{2}\leq\left(\sum_{\mathbf{Y}\in\mathcal{T}}\frac{4}{1-\breve{R}(\mathbf{Y})}\right) \qquad \times\left(\sum_{\mathbf{Y}\in\mathcal{T}}(1-\breve{R}(\mathbf{Y}))\right)$$

$$4(\operatorname{Lu}(\mathcal{T}_1))^2 \leq \left(\operatorname{Lu}(\mathcal{S}) + \operatorname{Lu}(\mathcal{U}) + 2\operatorname{Lu}(\mathcal{T}_1)\right) \quad \times \left(\operatorname{Lu}(\mathcal{T}_1) - \left(\operatorname{Lu}(\mathcal{F}) - 2\right)\right)$$

To generalize this to a chain counting argument in the general case (i.e., non-3-layer case), there are two problems:

- ullet The inequality with $\mathrm{Lu}(\mathcal{S})$ and $\mathrm{Lu}(\mathcal{U})$ is more complicated. Hence,
- $\breve{R}(Y)$ is **much** more complicated.

In order to make it work, we partition, for instance, $\check{f}(Y) = \check{f}_1(Y) + \check{f}_2(Y)$, depending on whether $X \subseteq Y$ or $X \not\subset Y$.

To generalize this to a chain counting argument in the general case (i.e., non-3-layer case), there are two problems:

- ullet The inequality with $\mathrm{Lu}(\mathcal{S})$ and $\mathrm{Lu}(\mathcal{U})$ is more complicated. Hence,
- $\breve{R}(Y)$ is **much** more complicated.

In order to make it work, we partition, for instance, $\check{f}(Y) = \check{f}_1(Y) + \check{f}_2(Y)$, depending on whether $X \subset Y$ or $X \not\subset Y$.

However, if no member of $\mathcal F$ covers another, then our technique can give no better bound than $\operatorname{Lu}(\mathcal F) \le 2\frac16 \approx 2.16667$.

To generalize this to a chain counting argument in the general case (i.e., non-3-layer case), there are two problems:

- ullet The inequality with $\mathrm{Lu}(\mathcal{S})$ and $\mathrm{Lu}(\mathcal{U})$ is more complicated. Hence,
- $\breve{R}(Y)$ is **much** more complicated.

In order to make it work, we partition, for instance, $\check{f}(Y) = \check{f}_1(Y) + \check{f}_2(Y)$, depending on whether $X \subset Y$ or $X \not\subset Y$.

However, if no member of $\mathcal F$ covers another, then our technique can give no better bound than $\operatorname{Lu}(\mathcal F) \le 2\frac16 \approx 2.16667$.

Preliminary work suggests we can get an upper bound strictly less than 2.25, however. Work (with Lucas Kramer) is ongoing.

• Improve the bounds $2\binom{n}{\lfloor n/2 \rfloor} \le |\mathcal{F}| \le (2.25 + o(1))\binom{n}{\lfloor n/2 \rfloor}$ if \mathcal{F} is \lozenge -free.

- Improve the bounds $2\binom{n}{\lfloor n/2 \rfloor} \le |\mathcal{F}| \le (2.25 + o(1))\binom{n}{\lfloor n/2 \rfloor}$ if \mathcal{F} is \lozenge -free.
- Improve the bounds $2\binom{n}{\lfloor n/2\rfloor} \le |\mathcal{F}| \le (2.15121 + o(1))\binom{n}{\lfloor n/2\rfloor}$ if \mathcal{F} is \lozenge -free and in three layers.

- Improve the bounds $2\binom{n}{\lfloor n/2 \rfloor} \le |\mathcal{F}| \le (2.25 + o(1))\binom{n}{\lfloor n/2 \rfloor}$ if \mathcal{F} is \lozenge -free.
- Improve the bounds $2\binom{n}{\lfloor n/2\rfloor} \le |\mathcal{F}| \le (2.15121 + o(1))\binom{n}{\lfloor n/2\rfloor}$ if \mathcal{F} is \lozenge -free and in three layers.
- Improve the Manske-Shen approach using Flag Algebras (a generalization of Cauchy-Schwarz).

- Improve the bounds $2\binom{n}{\lfloor n/2 \rfloor} \le |\mathcal{F}| \le (2.25 + o(1))\binom{n}{\lfloor n/2 \rfloor}$ if \mathcal{F} is \lozenge -free.
- Improve the bounds $2\binom{n}{\lfloor n/2\rfloor} \le |\mathcal{F}| \le (2.15121 + o(1))\binom{n}{\lfloor n/2\rfloor}$ if \mathcal{F} is \lozenge -free and in three layers.
- Improve the Manske-Shen approach using Flag Algebras (a generalization of Cauchy-Schwarz).
- Develop a general theory for poset Turán problems.