Recent Progress on Diamond-Free Families

Ryan Martin
lowa State University

Joint work with Lucas Kramer and Michael Young

Minisymposium on Posets, Part |
2014 SIAM Conference on Discrete Mathematics

Kramer-Martin-Young (lowa State U.) Diamond-free families 16 June 2014


http://www.public.iastate.edu/~ljkramer/
http://orion.math.iastate.edu/myoung/
http://meetings.siam.org/sess/dsp_programsess.cfm?SESSIONCODE=19032
http://www.siam.org/meetings/dm14/

This talk is based on joint work with:

s B LR ‘\\\\\
Lucas Kramer Michael Young
lowa State lowa State

Kramer-Martin-Young (lowa State U.) Diamond-free families 16 June 2014 2 /20


http://www.public.iastate.edu/~ljkramer/
http://orion.math.iastate.edu/myoung/

The Boolean lattice

Definition

For any (finite) set S, the POWER SET OF S is the set of all subsets of S
and is denoted 2°.

Definition

The BOOLEAN LATTICE OF DIMENSION n is a partially-ordered set with

ground set 2110} so that X < Y in the poset whenever X C Y as sets.
We denote it as B,,.
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The Boolean lattice

Definition
The BOOLEAN LATTICE OF DIMENSION n is a partially-ordered set with

ground set 2110} 5o that X =< Y in the poset whenever X C Y as sets.
We denote it as B,,.
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Figure: B3 Figure: By, the "DIAMOND"
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Formal definitions

Definition
Let P be a finite poset. Another poset Q is said to CONTAIN P AS A
(WEAK) SUBPOSET if there exists an injective map ¢ : P — Q such that

if pr Xp p2, then ¢(p1) =0 d(p2)-

If Q does not contain P as a subposet, then Q is said to be P-FREE.

A family of sets F C B, is said to be P-free if the induced order on F is
P-free. )
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Formal definitions

Definition

Let P be a finite poset. Another poset Q is said to CONTAIN P AS A
(WEAK) SUBPOSET if there exists an injective map ¢ : P — Q such that
if p1 Zp p2, then ¢(p1) =g ¢(p2)-

If Q does not contain P as a subposet, then Q is said to be P-FREE.

A family of sets F C B, is said to be P-free if the induced order on F is

P-free. )
{1}
A family F is By-free if and only if it is an I
ANTICHAIN. &
Figure: By
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(Just a few) prior results

Theorem (Sperner, 1928)

Let La(n,C2) denote the size of the largest family ®
in By, which has no chain of height 2. Then,

La(n )= (7))
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(Just a few) prior results

Theorem (Erdés, 1945)

Let La(n,Cx) denote the size of the largest
family in By, which has no chain of height k as a
(weak) subposet. Then,

La(n,Ck):Z(n’k_l)w(k_l)(Ln;ﬂ)’ Pk

where ¥(n, k — 1) denotes the sum of the k — 1
largest binomial coefficients (). -
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(Just a few) prior results

Theorem (Griggs-Lu, 2009 (r > 4 even); Lu,
2012+ (r > 7 odd))

Let r € {4,6,7,8,...} and La(n,CR,) denote
the size of the largest family in B,, which has no

“crown” of length 2r as a (weak) subposet.
Then,

La(n,CR,) ~ (Ln?%)'
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(Just a few) prior results

Theorem (Griggs-Li-Lu, 2011)

Let r € {3,4,7,8,9,15,...} (ocoly many) and
La(n,D,) denote the size of the largest family in
Bn, which has no ‘generalized diamond” of order
r+ 2 as a (weak) subposet. Then,
La(n,Dr) = X (n,[log(r+2)]) P
~ Tloga(r + 2)1(,7a)):

where ¥(n, k) denotes the sum of the k largest
binomial coefficients (7).
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Thanks to Wei-Tian Li for this summary and Lucas Kramer for the figures.
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(Just a few) prior results

Theorem (Bukh, 2009)

Let P be a poset whose Hasse diagram is a tree and let e(P) be the least

number such that P is not a subposet of e(P) layers in B,, for n
sufficiently large. Then,

La(n,P) ~ e(P)(M’/’ZJ)

Kramer-Martin-Young (lowa State U.)
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(Just a few) prior results

Conjecture (Griggs-Lu, 2009)
Let P be any fixed poset. Then,
La(n, P)

7(P) = lim
& (L)

n—oo

exists and is an integer.
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(Just a few) prior results

Conjecture (Griggs-Lu, 2009)
Let P be any fixed poset. Then,

La(n, P)
(Ln72j)

In addition, if e(P) is the least number such that P is not a subposet of
any e(P) layers in B, for n sufficiently large then,
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(Just a few) prior results

Theorem (Griggs-Lu, 2009)

Let La(n, Q) denote the size of the largest family
in B, which has no “diamond” as a (weak)
subposet. Then,

La(n,¢) < (2.3 +o(1)) (Ln,/72J>'
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(Just a few) prior results

Theorem (Axenovich-Manske-M., 2012)

Let La(n, Q) denote the size of the largest family
in B, which has no “diamond” as a (weak)
subposet. Then,

La(n, 0) < (2.284 + o(1)) (Lnr/72J)'
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(Just a few) prior results

Theorem (Griggs-Li-Lu, 2011)

Let La(n, Q) denote the size of the largest family
in B, which has no “diamond” as a (weak)
subposet. Then,

La(n,¢) < (2.273 + o(1)) (Ln’/’%).
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(Just a few) prior results

Theorem (Kramer-M.-Young, 2012)

Let La(n, Q) denote the size of the largest family
in B, which has no “diamond” as a (weak)
subposet. Then,

La(n,¢) < (2.25 + o(1)) (Ln,/72j>'
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(Just a few) prior results

Theorem (Kramer-M.-Young, 2012)

Let La(n, Q) denote the size of the largest family
in B, which has no “diamond” as a (weak)
subposet. Then,

La(n,¢) < (2.25 + o(1)) (Ln,/72j>'

Proposition

La(n,0) > X(n,2) ~ 2(Ln72J)‘

Kramer-Martin-Young (lowa State U.)
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The Lubell function

Let F be a family of sets in the n-dimensional Boolean lattice, B,. The
LUBELL FUNCTION OF F is

Lu(n, F) = Lu(F) = 3 (IZI> N

FEF

Kramer-Martin-Young (lowa State U.) Diamond-free families 16 June 2014 6 /20



The Lubell function

Definition
Let F be a family of sets in the n-dimensional Boolean lattice, B,. The
LUBELL FUNCTION OF F is

({5 = ({72 = IZ; (IZI> N

v

This function features prominently in some proofs of Sperner’s theorem. In
particular, we have the LYM (also called YBLM) inequality:

Theorem (Yamamoto, 1954; Meshalkin, 1963; Bollobds, 1965; Lubell,
1966)

If F is an antichain, then

Lu(F) < 1.
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Key Lemma 1

Definition

Let P be a nontrivial poset and let

Lu*(P) def |im sup{Lu(n, F) : F is P-free and ) € F}.

n—o0

The quantity Lu*(P) is integral to our Key Lemma 1:
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Key Lemma 1

Definition

Let P be a nontrivial poset and let

Lu*(P) def |im sup{Lu(n, F) : F is P-free and ) € F}.

n—o0

The quantity Lu*(P) is integral to our Key Lemma 1:

Lemma (Griggs-Li-Lu, 2012)

Let P be a nontrivial poset and let F be a P-free family in the
n-dimensional Boolean lattice, B,,. Then,

1712 @P) + o) (7 )

Kramer-Martin-Young (lowa State U.) Diamond-free families

16 June 2014



Key Lemma 1

Definition

Let P be a nontrivial poset and let

Lu*(P) & Jim sup{Lu(n, F) : F is P-free and ) € F}.

n—o0

The quantity Lu*(P) is integral to our Key Lemma 1:

Lemma (Griggs-Li-Lu, 2012)

Let P be a nontrivial poset and let F be a P-free family in the
n-dimensional Boolean lattice, B,,. Then,

1712 @P) + o) (7 )

So, it suffices to upper bound Lubell functions for P-free families that
CONTAIN THE EMPTYSET.
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The Lubell bound cannot match lower bound

Recall that for the diamond poset, there is a trivial lower bound.

Proposition

La(n,0) > =(n,2) ~ 2(Ln’/72J)'
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The Lubell bound cannot match lower bound

Recall that for the diamond poset, there is a trivial lower bound.

Proposition

La(n,0) > =(n,2) ~ 2<Ln’/72J>'

Key Lemma 1 reduces to the following for P = {:
Lemma (Key 1: Griggs-Li-Lu, 2012)

Let & be the diamond poset and let F be a diamond-free family in the
n-dimensional Boolean lattice, B,. Then,

1712 @w(0)+ o) (|75 ):
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The Lubell bound cannot match lower bound

Key Lemma 1 reduces to the following for P = {:

Lemma (Key 1: Griggs-Li-Lu, 2012)

Let { be the diamond poset and let F be a diamond-free family in the
n-dimensional Boolean lattice, B,. Then,

1712 @u(0) + o) 1 ).

Unfortunately, we cannot use this to tighten the bound further.

Proposition (Griggs-Li-Lu, 2012)

For every n > 4, there are at least two nonisomorphic -free families,
F C B, with

Lu(F)=2+ —— {—J ~ 2.25.
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The Lubell bound cannot match lower bound

Key Lemma 1 reduces to the following for P = {:

Lemma (Key 1: Griggs-Li-Lu, 2012)

Let { be the diamond poset and let F be a diamond-free family in the
n-dimensional Boolean lattice, B,,. Then,

1712 @u(0) + o) 1 ).

Proposition (Griggs-Li-Lu, 2012)

For every n > 4, there are at least two nonisomorphic {-free families,
F C B, with

Lu(F) =2+ ﬁ HJ ~ 2.25.

Our goal is to show that Lu*({) = 2.25.
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Key Lemma 2

Lemma (Key 2)

There is a function f(n, v, G) such that, for every O-free family F, in B,
with ) € F, there is a graph G on v < n vertices such that

Lu(F) < 2+4f(nv,G)
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Key Lemma 2

Lemma (Key 2)

There is a function f(n, v, G) such that, for every O-free family F, in 3,
with ) € F, there is a graph G on v < n vertices such that

Lu(F) < 2+4f(nv,G)

= 24 2a1(G)—2a2(G)

650(G)
AN GEAT

n(n—1)(n—2)(n—3)

o «;(G) is the # of triples that induce exactly i edges, i =0,1,2,3,
@ [o(G) is the # of quadruples that induce exactly 0 edges,
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Key Lemma 2

Lemma (Key 2)

There is a function f(n, v, G) such that, for every O-free family F, in 3,
with ) € F, there is a graph G on v < n vertices such that

Lu(F) < 2+4f(nv,G)

_ 201(G)—20:2(G) 660(G) o
= 24+ T -2 T A )(-2)(n=3) T

Xl Yul | 48(Ya)—28(Xe
+ X wew [' n(|nJ1) L+ n((nf)l)(n£2) )] ;

o «(G) is the # of triples that induce exactly i edges, i =0,1,2,3,
@ [o(G) is the # of quadruples that induce exactly 0 edges,

o W =[n]—-V(G),

o (Xw, Yw) is a partition of V(G), Vw (Xw, Y could be empty)

e ¢(S) is the number of nonedges induced by S C V(G).
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Bounding f

Definition

201(G)—2a2(G 660(G
f(nv v, G) = nl(gr—)l)(n—zg)) + n(n—l)l(Bg(_zg(”_”

Xw|—|Yw de(Yw)—2e(Xuw
+ Y wew || n(|n—|1) L+ i((n—)1)(:£2))]
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Bounding f

Definition

201(G)—2a2(G 660(G
f(nv v, G) = nl(gr—)l)(n—zg)) + n(n—l)l(Bg(_zg(”_”

Xw|—|Yw de(Yw)—2e(Xuw
+ Y wew || n(|n—|1) L+ i((n—)1)(:£2))]

Our goal is to show that, for any v < n and any G on v vertices,
f(n,v,G) <0.25+ o(1).
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Bounding f

Definition

201(G)—2a2(G 660(G
f(n) v, G) = nl(gr—)l)(n—zg)) + n(n—l)l(B’?(_zg(”_?’)

Xw|—|Yw de(Yw)—2e(Xuw
+ Y wew || n(ln—‘l) L+ i((n—)1)(:£2))] :

Our goal is to show that, for any v < n and any G on v vertices,
f(n,v,G) <0.25+ o(1).

It turns out to be relatively easy to verify that

Proposition

max{f(n,v,G):v <2n/3} = ﬁ VTzJ <lq 1

The maximum occurs only if v ={|n/2],[n/2]} and G = K,.
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Bounding f

Definition
f(n,v,G) = 2al&)2a:C) 650(G)

n(n—1)(n—2) n(n—1)(n—2)(n—3)

Xl |Yul | 48(Yi)—28(Xe
+ Y wew || n(ln—‘l) L+ i((n—)l)(:SZ))] :

It turns out to be relatively easy to verify that

Proposition

max{f(n,v,G) : v <2n/3} = ﬁ L%J <ly 4(,11_1).

The maximum occurs only if v={|n/2],[n/2]} and G = K,.

So, we have to consider v > 2n/3. For purposes of illustration, let’s
eliminate the summation term by assuming v = n.
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The simplified problem

2041(G) — 20[2(6) 6ﬂ0(G)
n(n—1)(n—2) n(n—1)(n—2)(n—3)

g(n, G)
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The simplified problem

2041(G) — 20[2(6) 6ﬂ0(G)
n(n—1)(n—2) n(n—1)(n—2)(n—3)

101(G) — 22(6) | 150(G)
4

3 () (2)

g(n, G)
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The simplified problem

_ 201(G) — 205(G) 660(G)
g(n G) = n(n—1)(n—2) n(n—1)(n—2)(n—3)
_ 1aa(G) — a(6) n 150(G)
3 () 4 (3)
= % > d(H),
4) H:|V(H)|=4
where 1 H 1 H 1 H
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The simplified problem

where
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The simplified problem

where

Clearly, g(n, G) < max{d(H) : |V(H)| = 4}.

Unfortunately, d (I I) %
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The correction factor

Suppose we can find a function ¢(H) such that ﬁ > yc(H)+o(1)>0.

4
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The correction factor

Suppose we can find a function ¢(H) such that ﬁ > yc(H)+o(1)>0.

4

Then,
8(n.G) = {yTud(H)

IN

(fb 2. (d(H) + c(H)) + o(1)

IN

max{d(H) + c(H) : |V(H)| = 4} + o(1).
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The correction factor

Suppose we can find a function ¢(H) such that ﬁ > yc(H)+o(1)>0.

4

Then,
8(n.G) = {yTud(H)

IN

(fb 2. (d(H) + c(H)) + o(1)

IN

max{d(H) + c(H) : |V(H)| = 4} + o(1).

How do we find such a c¢?
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First we set up flags

Given two nonadjacent vertices “1" and “2”, the

1
probability that a random vertex is adjacent to “1" \
and nonadjacent to “2" is denoted: 2@
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First we set up flags

Given two nonadjacent vertices “1" and “2", the 1\

probability that a random vertex is adjacent to “1"

and nonadjacent to “2" is denoted: 2@
Given two nonadjacent vertices “1" and “2", the 1@
probability that a random vertex is adjacent to “2"

and nonadjacent to “1"” is denoted: 2 /
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First we set up flags

Given two nonadjacent vertices “1" and “2”, the 1
probability that a random vertex is adjacent to “1"

and nonadjacent to “2" is denoted: 2@

Given two nonadjacent vertices “1" and “2", the

1@
probability that a random vertex is adjacent to “2"
2 /

and nonadjacent to “1"” is denoted:

1

NI .z;.,.
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r e 71 r e
o2 0 O 0 0 2@
o -
1 . 0 1 -1 0 o
1 _ 1
@ 2nH =g 2 N 0 -1 1 0/|]|"
(1,2) i o 0 00]]|:
142 | < | Ed

- 1_T o -

'Ij 100 -1 jI'

1 1 000 of]D

4 J 000 0]
(.2 : 100 1]]:

1~2 .qz ZD.
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r e 7T r e
e 0 0 oo0]|
. 1 . 0 1 -1 0]/
pzne) =g Sl ot 1ol
ez | & L0000
- 1_',' o -
'Ij 100 -1 jI'
1 1 000 of]D
PN 000 of]1
vz g L0 T

The matrices are positive semidefinite.

Kramer-Martin-Young (lowa State U.) Diamond-free families 16 June 2014 14 /20



The matrices are positive semidefinite, hence
T

A=
.
N
-
|
-
.
—
-
|
—
—
.

>
"

veE7E
|

- q
2@ l 2
-1 1 P ZN: R\
~ g4

AL
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The matrices are positive semidefinite, hence

a7
-
1 .
a2 |
<
So,
Lu(F)

/" 3.3

1771 1 17T
1 ™

EEPURI 1|20
L\8 -1 1 >
H)) + o(1)

16 June 2014 14 /20
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The matrices are positive semidefinite, hence

Sl e 27171 1 17
- ™ ! !
1 o 1 -1 l -1 >
a2 |« P tiX |y 1| 20
< Z> < -1 1 >

So,
Lu(F) Z(d H)) + o(1)

Recall d (I I) = %

16 June 2014 14 /20
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The matrices are positive semidefinite, hence

7 e 11'r s 17T
o ‘\ ! !
l o 1 —1 l (L ZI\
a2 |« P tiX |y 1| 20
< Z> < -1 1 >

So,
Lu(F) Z(d H)) + o(1)

Recall d (I I) = %
Since ¢ (I I) = —%

16 June 2014
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The matrices are positive semidefinite, hence

7 e 11'r s 17T
o ‘\ ! !
l o 1 —1 l (L ZI\
a2 | P tiX |y 1| 20
< Z> < -1 1 >

So,
Lu(F) Z(d H)) + o(1)

Recall d (I I) = %
Since ¢ (I I) = _411
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The matrices are positive semidefinite, hence

7 e 11'r s 17T
= - ~ 1 ™

1 11 41

a2 |« P tiX |y 1| 20
< Z> < -1 1 >

So,
Lu(F) Z(d H)) + o(1)

Recall d (I I) = %
Since ¢ (I I) = —%

16 June 2014
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The matrices are positive semidefinite, hence

7 e o A 17 T
o ‘\ ! !
l o 1 —1 l (L ZI\
a2 |« P tiX |y 1| 20
< Z> < -1 1 >

So,
Lu(F) Z(d H)) + o(1)

Recall d (I I) = %
Since ¢ (I I) = —%
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The matrices are positive semidefinite, hence

7 e 11'r s 17T
o ‘\ !
l o 1 —1 l (I ZI\
a2 |« P +tik |y 1| 20
< Z> < -1 1 >

So,
Lu(F) Z(d H)) + o(1)

Recall d (I I) = %
Since ¢ (I I) = —%

16 June 2014
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So,
(d(H) + c(H)) + o(1)

&=
A
3
IN

N

+

=3[ =
=[]

Recall d (I I) = %
Since ¢ (I I) = —%

This choice of matrices makes d(H) + c(H) < 1 for every H and equality
if H is a subgraph of 2 disjoint cliques.
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So,

Lu(F) <2+ = 3" (d(H) + c(H)) + o(1) <2+ % +o(1).
H

af) el -1

This choice of matrices makes d(H) + c(H) < % for every H and equality
if H is a subgraph of 2 disjoint cliques.

Hence g(n, G) < % + o(1), the objective.
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Results on three layers

Theorem (Kramer-M.-Young, 2012)

Let La(n, ) denote the size of the largest family in BB,, which has no
“diamond” as a (weak) subposet. Then,

La(n, 0) < (2.25 + o(1)) ({n,/72j)'

Suppose we restrict ourselves to (-free families F that exist in only three
layers. That is, the subsets of [n] in it only have three different sizes.
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Results on three layers

Theorem (Kramer-M.-Young, 2012)

Let La(n, ) denote the size of the largest family in BB,, which has no
“diamond” as a (weak) subposet. Then,

La(n, 0) < (2.25 + o(1)) <£n'/’2j>.

Suppose we restrict ourselves to (-free families F that exist in only three
layers. That is, the subsets of [n] in it only have three different sizes.

If F is a O-free family in three layers of B, then
e |F| <(2.20711 + o(1)) (Ln72j) [Axenovich-Manske-M., 2012]
o |F| < (2.15471 + 0(1)) (|,7»)) [Manske-Shen, 2012]
o |F| < (2.15121 + 0(1)) (|,,5)) [Balogh-Hu-Lidicky-Liu, 2012]
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Results on three layers

If F is a O-free family in three layers of B, then
e |F| < (2.20711 + o(1)) (Ln72j) [Axenovich-Manske-M., 2012]

o |F| < (2.15471 + 0(1)) (|,,7»)) [Manske-Shen, 2012]

@ The first two use a method that involves something similar to the
chain counting arguments that gave the general bound of 2.25.
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Results on three layers

If F is a O-free family in three layers of B, then

o |F| < (2.15121 + 0(1)) (|,5)) [Balogh-Hu-Lidicky-Liu, 2012]

@ The first two use a method that involves something similar to the
chain counting arguments that gave the general bound of 2.25.

@ The last one uses flag algebras more-or-less directly.
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Results on three layers

If F is a O-free family in three layers of B, then

71 < (1428 + 0(1)) (1)) [Manske-Shen, 2012]

@ The first two use a method that involves something similar to the
chain counting arguments that gave the general bound of 2.25.

The last one uses flag algebras more-or-less directly.

@ Let us focus on the slightly higher Manske-Shen bound.

Kramer-Martin-Young (lowa State U.) Diamond-free families 16 June 2014 15 /20



Manske-Shen method

Let F be a {-free family in three layers of 5,.

We observe that we can ensure that the three layers are consecutive and
the sizes of the sets in those layers are ~ n/2.

Therefore, | F| ~ Lu(}-)(LnI/]zJ)'
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Manske-Shen method

Let F be a {-free family in three layers of 5,.

We observe that we can ensure that the three layers are consecutive and
the sizes of the sets in those layers are ~ n/2.

Therefore, | F| ~ Lu(}-)(LnI/]zJ)'

Moreover, F =S U T U U, where
@ U is in the top layer,
@ 7 is in the middle layer, and

@ S is in the bottom layer.
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f and g functions

F=8SUTuU

e For Y € T, let f(Y) denote the proportion of chains from @ to Y
that have a member of S.
e For Y € T, let g(Y) denote the proportion of chains from Y to [n]
that have a member of U.
These are duals of other functions f and g which we don’t need to
introduce, but we'll keep the notation.
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f and g functions

F=8SUTuU

e For Y € T, let f(Y) denote the proportion of chains from @ to Y
that have a member of S.
e For Y € T, let g(Y) denote the proportion of chains from Y to [n]
that have a member of U.
These are duals of other functions f and g which we don’t need to
introduce, but we'll keep the notation. More notation:

n\ 1
Lu(F) =2+ Y (IYI) (?(Y) +E(Y) - 1)

YeT
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f and g functions

F=8SUTuU

e For Y € T, let f(Y) denote the proportion of chains from @ to Y
that have a member of S.
e For Y € T, let g(Y) denote the proportion of chains from Y to [n]
that have a member of U.
These are duals of other functions f and g which we don’t need to
introduce, but we'll keep the notation. More notation:

Lu(F) = 2+Z< ) (?(Y)+g(v)_1)

YeT

_2+§j(f(v v)_1)

YeT
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f and g functions

F=8SUTuU

e For Y € T, let f(Y) denote the proportion of chains from @ to Y
that have a member of S.
e For Y € T, let g(Y) denote the proportion of chains from Y to [n]
that have a member of U.
These are duals of other functions f and g which we don’t need to
introduce, but we'll keep the notation. More notation:

Lu(F) = 2+Z< ) (?(Y)+g(v)_1)

YeT
FE(Y) - 1)

Il
N
+
e
¢
5
(ch
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Cauchy-Schwarz via Manske-Shen

LetTl:{YeT:f\’(Y)zo}.

The proof begins with a quick application of Cauchy-Schwarz.

2 5 A
2] < 1—-R(Y X —_—
(v% ) _<\§( ( ))> <\§1_R(Y)>
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Cauchy-Schwarz via Manske-Shen

LetTl:{YeT:f\’(Y)zo}.

The proof begins with a quick application of Cauchy-Schwarz.
Then, we use a convenient lemma involving Lu(S) and Lu(¥/).

2 5 A
2] < 1—-R(Y X —_—
(v% ) _<\§( ( ))> <\§1_R(Y)>

4(Lu(71))? < (Lu(T1) — (Lu(F) = 2))  x (Lu(S) + Lu(l) + 2Lu(77))
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Cauchy-Schwarz via Manske-Shen

LetTl:{YeT:f\’(Y)zo}.

The proof begins with a quick application of Cauchy-Schwarz.
Then, we use a convenient lemma involving Lu(S) and Lu(¥/).

2 5 A
2] < 1—-R(Y X ——
(v% ) (v%( ( ))> <\§1_R(Y)>

4(Lu(71))? < (Lu(T1) — (Lu(F) = 2))  x (Lu(S) + Lu(l) + 2Lu(77))

Simplifying,
0 < (Lu(71) — (Lu(F) - 2)) x (Lu(F) — Lu(T) + 2Lu(71)) — 4(Lu(71))?
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Cauchy-Schwarz via Manske-Shen

LetTl:{YeT:f\’(Y)zo}.

The proof begins with a quick application of Cauchy-Schwarz.
Then, we use a convenient lemma involving Lu(S) and Lu(¥/).

2 5 A
2] < 1—-R(Y X ——
(v% ) (v%( ( ))> <\§1_R(Y)>

4(Lu(71))? < (Lu(T1) — (Lu(F) = 2))  x (Lu(S) + Lu(l) + 2Lu(77))

Simplifying,
0 < (Lu(T1) — Lu(F) + 2) x (Lu(F) + Lu(T1)) — 4(Lu(71))*
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Cauchy-Schwarz via Manske-Shen

LetTl:{YeT:f\’(Y)zo}.

The proof begins with a quick application of Cauchy-Schwarz.
Then, we use a convenient lemma involving Lu(S) and Lu(¥/).

4(Lu(T1))* < (Lu(T1) — (Lu(F) = 2))  x (Lu(S) + Lu(Y) + 2Lu(T1))

Simplifying,

0 < (Lu(71) — Lu(F) + 2) x (Lu(F) + Lu(71)) — 4(Lu(77))?
< —(Lu(F))? + 2Lu(F) — 3(Lu(77))? + 2Lu(77)
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Cauchy-Schwarz via Manske-Shen

LetTl:{YeT:f\’(Y)zo}.

The proof begins with a quick application of Cauchy-Schwarz.
Then, we use a convenient lemma involving Lu(S) and Lu(¥/).

4(Lu(T1))* < (Lu(T1) — (Lu(F) = 2))  x (Lu(S) + Lu(Y) + 2Lu(T1))

Simplifying,

0< (Lu(7'1) — Lu(F) + 2) x (Lu(F) + Lu(71)) — 4(Lu(77))?
< —(Lu(F)? + 2Lu(F) — 3(Lu(71))* + 2Lu(T1)
< —(Lu(F))? + 2Lu(F) — 3(1/3)* +2(1/3)
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Cauchy-Schwarz via Manske-Shen

LetTl:{YeT:f\’(Y)zo}.

The proof begins with a quick application of Cauchy-Schwarz.
Then, we use a convenient lemma involving Lu(S) and Lu(¥/).

4(Lu(T1))* < (Lu(T1) — (Lu(F) = 2))  x (Lu(S) + Lu(Y) + 2Lu(T1))

Simplifying,

0 < (Lu(71) — Lu(F) + 2) x (Lu(F) + Lu(71)) — 4(Lu(77))?
< —(Lu(F))? 4 2Lu(F) — 3(Lu(71))? + 2Lu(77)
< —(Lu(F))? + 2Lu(F) + 1/3
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Cauchy-Schwarz via Manske-Shen

LetTl:{YeT:f\’(Y)zo}.

The proof begins with a quick application of Cauchy-Schwarz.
Then, we use a convenient lemma involving Lu(S) and Lu(¥/).

Simplifying,
0 < (Lu(77) — Lu(F) + 2) x (Lu(F) 4 Lu(71)) — 4(Lu(77))?
< —(Lu(F))? + 2Lu(F) — 3(Lu(71))? 4 2Lu(77)
< —(Lu(¥))? + 2Lu(F) + 1/3

By the quadratic formula,

3+2V3
2

Lu(F) < ~ 2.15471.
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How to use Manske-Shen

Can we exploit this technique to the general case?
2 A )
() (Erim) (2
4(Lu(77))? < (Lu(S) + Lu(f) + 2Lu(71)) x (Lu(T1) — (Lu(F) — 2))

To generalize this to a chain counting argument in the general case (i.e.,
non-3-layer case), there are two problems:
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To generalize this to a chain counting argument in the general case (i.e.,
non-3-layer case), there are two problems:

@ The inequality with Lu(S) and Lu(i/) is more complicated. Hence,
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How to use Manske-Shen

Can we exploit this technique to the general case?
2
4 o
» 2) < (E ) x (E(l—R(Y)))
(YGT ver 1— R(Y) YeT

4(Lu(T1))? < (Lu(S) + Lu() + 2Lu(71)) x (Lu(71) — (Lu(F) — 2))

To generalize this to a chain counting argument in the general case (i.e.,
non-3-layer case), there are two problems:

@ The inequality with Lu(S) and Lu(i/) is more complicated. Hence,

e R(Y) is much more complicated.
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How to use Manske-Shen

Can we exploit this technique to the general case?

2 A 5
2| < _ X (1- R(Y))>
(22 < (ZiFm) =
4(Lu(T1))? < (Lu(S) + Lu() + 2Lu(71)) x (Lu(71) — (Lu(F) — 2))

To generalize this to a chain counting argument in the general case (i.e.,
non-3-layer case), there are two problems:

@ The inequality with Lu(S) and Lu(i/) is more complicated. Hence,

e R(Y) is much more complicated.

In order to make it work, we partition, for instance, f(Y) = A(Y)+ h(Y),
depending on whether X G Y or X £ Y.
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How to use Manske-Shen

To generalize this to a chain counting argument in the general case (i.e.,
non-3-layer case), there are two problems:

@ The inequality with Lu(S) and Lu(&/) is more complicated. Hence,

e R(Y) is much more complicated.

In order to make it work, we partition, for instance, f(Y) = A(Y)+ h(Y),
depending on whether X C Y or X £ Y.

However, if no member of F covers another, then our technique can give
no better bound than Lu(F) < 2% ~ 2.16667.
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How to use Manske-Shen

To generalize this to a chain counting argument in the general case (i.e.,
non-3-layer case), there are two problems:

@ The inequality with Lu(S) and Lu(&/) is more complicated. Hence,

e R(Y) is much more complicated.

In order to make it work, we partition, for instance, f(Y) = A(Y)+ h(Y),
depending on whether X C Y or X £ Y.

However, if no member of F covers another, then our technique can give
no better bound than Lu(F) < 2% ~ 2.16667.

Preliminary work suggests we can get an upper bound strictly less than
2.25, however. Work (with Lucas Kramer) is ongoing.
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o Improve the bounds 2(|,7, ) < |F| < (225 + 0(1))(|,,)) if F is
O-free.
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o Improve the bounds 2(|,7, ) < |F| < (225 + 0(1))(|,,)) if F is
O-free.

o Improve the bounds 2(;,7, ) < || < (2.15121 + o(1))(
QO-free and in three layers.

7o) if Fis

@ Improve the Manske-Shen approach using Flag Algebras (a
generalization of Cauchy-Schwarz).
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o Improve the bounds 2(|,7, ) < |F| < (225 + 0(1))(|,,)) if F is
O-free.

o Improve the bounds 2(| 7, ) < |F| < (215121 + o(1))(|,,7,|) if F is
QO-free and in three layers.

@ Improve the Manske-Shen approach using Flag Algebras (a
generalization of Cauchy-Schwarz).

@ Develop a general theory for poset Turdn problems.
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