ESTIMATION OF THE SIZE OF *P*-FREE FAMILIES

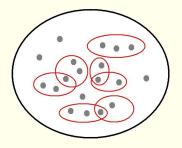
Wei-Tian Li joint work with Hong-Bin Chen

Department of Applied Mathematics National Chung Hsing University

SIAM Conference on Discrete Mathematics 2014

Introduction

Consider a family of subsets of $[n] := \{1, 2, ..., n\}$ such that $A \subset B$ is not allowed for any distinct members A and B of this family. Such a family is said to be *inclusion-free*.



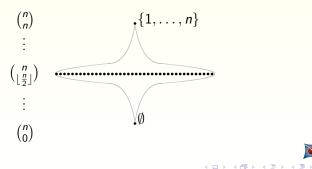
イロト 不得下 イヨト イヨ

Question: What is the maximum size of such a family?

THEOREM (Sperner, 1928) Let \mathcal{F} be an inclusion-free family of subsets of [n]. Then

$$|\mathcal{F}| \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

The upper bound is achieved by taking all sets of size $\lfloor \frac{n}{2} \rfloor$.

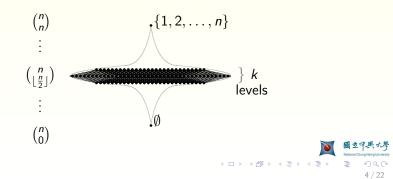


THEOREM (Erdős, 1945)

Let \mathcal{F} be a family of subsets of [n] such that no k + 1 sets in \mathcal{F} satisfy $A_1 \subset \cdots \subset A_{k+1}$. Then

$$|\mathcal{F}| \leq \sum_{i=1}^{k} {n \choose \lfloor \frac{n-k}{2} + i \rfloor}.$$

The upper bound is achieved by taking all sets of middle k sizes.



Families Without a Subposet

A poset (partially ordered set) $P = (P, \leq)$ is a set P with a binary partial order relation \leq satisfying

For all x ∈ P, x ≤ x. (reflexivity)
 If x ≤ y and y ≤ x, then x = y. (antisymmetry)
 If x ≤ y and y ≤ z, then x ≤ z. (transitivity)

Figure: The Hasse diagrams of some small posets.

The *Boolean lattice* $\mathcal{B}_n = (2^{[n]}, \subseteq)$ is the poset consisting of the power set of [n] and the inclusion relation as the partial order.

A poset $P_1 = (P_1, \leq_1)$ contains another poset $P_2 = (P_2, \leq_2)$ as a *(weak) subposet* if there exists an injection f from P_2 to P_1 , which preserves the order, that is $f(a) \leq_1 f(b)$ whenever $a \leq_2 b$.

Example:

$$P_{2} = \left(\{a, b, c\}, \{(a, b), (a, c)\}\right)$$

$$P_{2} = \left(\{a, b, c\}, \{(a, b), (a, c)\}\right)$$

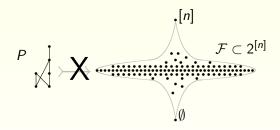
$$C \longrightarrow C$$

$$B = P_{1}$$

$$A$$

$$P_{1} = \left(\{A, B, C\}, \{(A, B), (B, C), (A, C)\}\right)$$

A *P*-free family \mathcal{F} is a collection of subsets of [n] such that it does not contain \underline{P} as a subsposet.



The largest size of a *P*-free family of subsets of [n] for a given poset *P* is denoted by La(n, P).

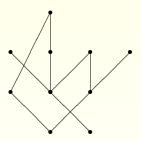
The difficulty of solving the problem is to find an <u>upper bound</u> on the size of families \mathcal{F} .

Note that every poset P can be extended as a chain on |P| elements.

Erdős's Theorem implies

$$\operatorname{La}(n, P) \leq \Sigma(n, |P| - 1) \sim (|P| - 1) {n \choose \lfloor rac{n}{2} \rfloor}$$

The *height* of a poset P, h(P), is the largest size of any chain in P.



THEOREM (Burcsi and Nagy, 2013) For any poset P, $La(n, P) \leq \left(\frac{|P| + h(P)}{2} - 1\right) {n \choose \lfloor \frac{n}{2} \rfloor}.$

Double Counting Method

Given a family $\mathcal{F} \subset 2^{[n]}$, consider some families $\mathcal{G}_1, \ldots, \mathcal{G}_k$ such that $\mathcal{F} \subset \bigcup_{i=1}^k \mathcal{G}_i$. We count the number of pairs (F, \mathcal{G}_i) whenever $F \in \mathcal{F} \cap \mathcal{G}_i$. Then

$$\sum_{F\in\mathcal{F}}(F,\mathcal{G}_i)=\sum_{i=1}^k(F,\mathcal{G}_i).$$

This helps us to deduce an upper bound on $|\mathcal{F}|$.

THEOREM (Spener, 1928)

Let \mathcal{F} be an inclusion-free family of subsets of [n]. Then

 $|\mathcal{F}| \leq {n \choose \lfloor \frac{n}{2} \rfloor}.$

Proof.(Lubell, 1966)

Let \mathcal{G}_i be a *full chain*: $\emptyset \subset \{a_1\} \subset \{a_1, a_2\} \subset \cdots \subset \{a_1, \ldots, a_n\}$. On the one hand, each set F is contained in $|F|!(n - F)! \mathcal{G}_i$'s. On the other hand, since \mathcal{F} is inclusion-free, $|\mathcal{F} \cap \mathcal{G}_i| \leq 1$.

THEOREM (Spener, 1928)

Let \mathcal{F} be an inclusion-free family of subsets of [n]. Then

 $|\mathcal{F}| \leq {n \choose \lfloor \frac{n}{2} \rfloor}.$

Proof.(Lubell, 1966) Let \mathcal{G}_i be a *full chain*: $\emptyset \subset \{a_1\} \subset \{a_1, a_2\} \subset \cdots \subset \{a_1, \ldots, a_n\}$. On the one hand, each set F is contained in $|F|!(n - F)! \mathcal{G}_i$'s. On the other hand, since \mathcal{F} is inclusion-free, $|\mathcal{F} \cap \mathcal{G}_i| \leq 1$.

$$\sum_{F \in \mathcal{F}} |F|!(n - |F|)! = \sum_{F \in \mathcal{F}} (F, \mathcal{G}_i) = \sum_{i=1}^{n!} (F, \mathcal{G}_i) \le n!$$

Hence $\sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}} \le 1$. This implies $|\mathcal{F}| \le \binom{n}{\lfloor \frac{n}{2} \rfloor}$.

11 / 22

- 4 回 2 4 日 2 4 日 2 日 日

Main Results

THEOREM (Chen and Li, 2014)

For any poset P, when n is sufficiently large, the inequality

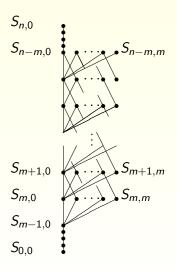
$$\operatorname{La}(n,P) \leq \frac{1}{m+1} \left(|P| + \frac{1}{2}(m^2 + 3m - 2)(h(P) - 1) - 1 \right) \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

holds for any fixed m with $1 \le m \le \frac{n}{2}$.

Proof. An *m*-linkage $\mathcal{L}^{(m)}$ consists of a main chain and *m* links.

The main chain is $\{S_{i,0} \mid 0 \le i \le n\}$, where $S_{i,0} = \{a_1, ..., a_i\}$.

For $1 \leq j \leq m$, the *j*th-link is $\{S_{i,j} \mid m \leq i \leq n-m\}$, where $S_{i,j} = \{a_1, \ldots, a_{i-1}\} \cup \{a_{i+j}\}$.



イロト イポト イヨト イヨト

Proof.

 $\begin{array}{l} \text{1st-link:} \{S_{i,1} \mid m \leq i \leq n-m\} \\ S_{i,1} = \{a_1, \dots, a_{i-1}\} \cup \{a_{i+1}\} \end{array}$

$$\{a_{1}, \dots, a_{n-m-1}, a_{n-m+1}\}$$

$$\{a_{1}, \dots, a_{n-m-2}, a_{n-m}\}$$

$$\{a_{1}, \dots, a_{n-m-3}, a_{n-m-1}\}$$

$$\vdots$$

$$\{a_{1}, \dots, a_{m}, a_{m+2}\}$$

$$\{a_{1}, \dots, a_{m-1}, a_{m+1}\}$$

Proof.

•

 $\begin{array}{l} {\rm 1st-link:} \{S_{i,1} \mid m \leq i \leq n-m \} \\ S_{i,1} = \{a_1, \dots, a_{i-1}\} \cup \{a_{i+1}\} \end{array}$

2nd-link: $\{S_{i,1} \mid m \le i \le n-m\}$ $S_{i,2} = \{a_1, \dots, a_{i-1}\} \cup \{a_{i+2}\}$

For a fixed m, the number of m-linkages is n!.

$$\{a_1, \dots, a_{n-m-1}, a_{n-m+2}\}$$

$$\{a_1, \dots, a_{n-m-2}, a_{n-m+1}\}$$

$$\{a_1, \dots, a_{n-m-3}, a_{n-m}\}$$

$$\{a_1, \dots, a_m, a_{m+3}\}$$

$$\{a_1, \dots, a_{m-1}, a_{m+2}\}$$

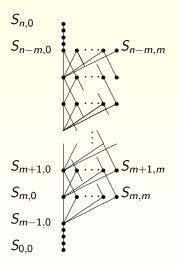
イロト イポト イヨト イヨト

We count the number of pairs $(F, \mathcal{L}^{(m)})$.

For a set $F \subseteq [n]$, the number of pairs $(F, \mathcal{L}^{(m)})$ is equal to

$$\sum_{\substack{F \in \mathcal{F} \\ |F| < m \text{ or } |F| > n-m}} |F|! (n - |F|)$$

$$+\sum_{\substack{F\in\mathcal{F}\\m\leq|F|\leq n-m}}(m+1)|F|!(n-|F|)!$$



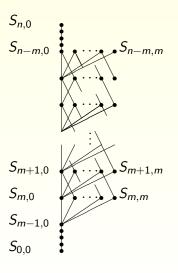
イロト 不得下 イヨト イヨト

16 / 22

Let $\mathcal{F} \subseteq 2^{[n]}$ be a *P*-free family. For any *m*-linkage $\mathcal{L}^{(m)}$,

$$|\mathcal{L}^{(m)}\cap\mathcal{F}|\leq |\mathcal{P}|+rac{1}{2}(\mathcal{M})(\mathcal{H})-1 \ ,$$

where $M = m^2 + 3m - 2$ and H = h(P) - 1.



イロト イポト イヨト イヨト

Combine

$$\sum_{\substack{F \in \mathcal{F} \\ |F| < m \text{ or } |F| > n-m}} |F|!(n-|F|)! + \sum_{\substack{F \in \mathcal{F} \\ m \le |F| \le n-m}} (m+1)|F|!(n-|F|)!$$

 $\quad \text{and} \quad$

$$|\mathcal{L}^{(m)} \cap \mathcal{F}|n| \leq (|P| + \frac{1}{2}(m^2 + 3m - 2)(h(P) - 1) - 1)n!.$$

We obtain

$$|\mathcal{F}| \leq rac{1}{m+1} \left(|P| + rac{1}{2} (m^2 + 3m - 2)(h(P) - 1) - 1
ight) inom{n}{\left\lfloor rac{n}{2}
ight
floor}$$

when n is sufficiently large.

COROLLARY (Chen and Li, 2014)

For any poset P and any sufficiently large n,

$$\operatorname{La}(n, P) \leq \left(\frac{1}{2}(|P| + h(P)) - 1\right) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

In particular, if $|P| \ge (5+2\sqrt{2})(h(P)-1)+1$, then we have a better bound

$$\operatorname{La}(n,P) \leq \left(\sqrt{2(h(P)-1)(|P|-2h(P)+1)} + h(P) - 1\right) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

COROLLARY (Chen and Li, 2014)

For any poset P and any sufficiently large n,

$$\operatorname{La}(n, P) \leq \left(\frac{1}{2}(|P| + h(P)) - 1\right) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

In particular, if $|P| \ge (5+2\sqrt{2})(h(P)-1)+1$, then we have a better bound

$$\operatorname{La}(n,P) \leq \left(\sqrt{2(h(P)-1)(|P|-2h(P)+1)} + h(P) - 1\right) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

Proof. Find the value of *m* that minimizes

$$f(m) = \frac{1}{m+1}(|P| + \frac{1}{2}(m^2 + 3m - 2)(h(P) - 1) - 1).$$

イロト 不得下 イヨト イヨト

19/22

COROLLARY (Chen and Li, 2014)

For any poset P and any sufficiently large n,

$$\operatorname{La}(n, P) \leq \left(\frac{1}{2}(|P| + h(P)) - 1\right) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

In particular, if $|P| \ge (5+2\sqrt{2})(h(P)-1)+1$, then we have a better bound

$$\operatorname{La}(n,P) \leq \left(\sqrt{2(h(P)-1)(|P|-2h(P)+1)}+h(P)-1\right) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

Remark It is not hard to see

$$\operatorname{La}(n,P) = O(\sqrt{h(P)|P|}).$$

Question: When m = 1,

$$\operatorname{La}(n,P) \leq \left(\frac{|P|+h(P)}{2}-1\right) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

Bursi and Nagy found many posets having

$$\operatorname{La}(n, P) \sim \left(\frac{|P| + h(P)}{2} - 1\right) {n \choose \lfloor \frac{n}{2} \rfloor}.$$

Question: When m = 1,

$$\operatorname{La}(n,P) \leq \left(\frac{|P|+h(P)}{2}-1\right) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

Bursi and Nagy found many posets having

$$\operatorname{La}(n, P) \sim \left(\frac{|P| + h(P)}{2} - 1\right) {n \choose \lfloor \frac{n}{2} \rfloor}.$$

For $m \ge 2$, does there exist P such that

$$\operatorname{La}(n,P) \sim \frac{1}{m+1} \left(|P| + \frac{1}{2}(m^2 + 3m - 2)(h(P) - 1) - 1 \right) {n \choose \lfloor \frac{n}{2} \rfloor}?$$

Question: Can we use more parameters of a poset P, such as width, dimension etc., to improve the upper bound of La(n, P)?

Question: Can we use more parameters of a poset P, such as width, dimension etc., to improve the upper bound of La(n, P)?

Thank you for your attention!!

