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Theorem (Erdés — Ko — Rado, 1961) If 7 c (7)) is intersecting where
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A family F c 2" is if [N G| >t holds
for every pair F, G € F.

Theorem (K, 1964) If F c 2[" is t-intersecting then

2

Siinsin () + (Li2y)  ifnttisodd .
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n+t is even

n+t is odd
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A problem of Korner.

Let F c 2"} and suppose that if Fy, s, G1,Gs € F, Fy # I, G1 # G5 holds
then
(Fl U Fg) M (Gl U GQ) + 0.

What is the maximum size of such a union-intersecting family?
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nis odd

n is even
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Theorem (Katona-D.T. Nagy 2014+) Suppose that the family 7 c 2l" is a
union—intersecting family then

7l < > iena (7 if n+ 1is odd
71 < Z:L:% (") + (g:}) if n + 1is even .

holds.
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A family F c 2"l is called a (u, v)-union-intersecting

if for different members Fi, . ..

. F.,G1,...,G, the following holds:

(U1 Fi) N (U5, G;) # 0.
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A family F c 2"l is called a (u, v)-union-intersecting
If for different members 1, ..., F,,G4,...,G, the following holds:

(U1 Fi) N (U5, G;) # 0.

The maximum size of a (u, v)-union-intersecting family on n elements
is denoted by f(n,u,v).
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The maximum size of a (u, v)-union-intersecting family on n elements
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f(n,1,1) = 2" ! is trivial.
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A family F c 2"l is called a (u, v)-union-intersecting
If for different members 1, ..., F,,G4,...,G, the following holds:

(U1 Fi) N (U5, G;) # 0.

The maximum size of a (u, v)-union-intersecting family on n elements
is denoted by f(n,u,v).

f(n,1,1) = 2" ! is trivial.

f(n,2,2) is the previous theorem.
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Theorem (Katona-D.T. Nagy 2014+)

f(n,1,2) = {%;—Ef;?ﬂ N (

2

n—1
n—3
2

)

if n 1s even
if n1s odd .

19



Theorem (Katona-D.T. Nagy 2014+)

Z?:n_ﬂ (Z’) + (E) if n1s odd .

2

f(n,1,2) = {ZZ—Q‘ (z) if n 1s even

2

D ien (n) if n is even

2—7 7

f(n,1,3) = {Zn . (7:) + (C‘L;ll) if n1s odd .

=2

2 2
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Theorem (Katona-D.T. Nagy 2014+)

D ien (7) if n 1s even
1.92) = 5
fim1,2) {Z?n-{l (") + (ZTQL) if nis odd .
Z?:% (ZL) if n is even
fn1.3) = {Z?nﬂ (7:) + (E) if n 1s odd .
2 2

Proof



Standardization of mathematical lectures
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Standardization of mathematical lectures

6345, §59. Every lecture should contain one proof and one joke
but they must not be the same.
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Theorem (Katona-D.T. Nagy 2014+)

e (%)
f 3= {z (1) + (i)

2

Proof
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Theorem (Katona-D.T. Nagy 2014+)

e (%)
f 3= {z (1) + (i)

2

Proof
F-={F: FcF}

G=FNF"~

if n 1s even

if n 1s odd .
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Theorem (Katona-D.T. Nagy 2014+)

f(n,1,3) = {Zzg (Z) if n 1s even

D inil (?) + (7;11) if n is odd .

Proof
F-={F: FeF}
G=FNF"~

1
2|F| < 2"+ (6] = |F] <277 + (g
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G contains no three distinct members A, B, C

suchthat A C B, A C C.
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G contains no three distinct members A, B, C

suchthat A C B, A C C.

Proof Ac B,AC CimpliesA>B,A>Cand A>BUC
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G contains no three distinct members A, B, C

suchthat A C B, A C C.

Proof Ac B,Ac CimpliesA>B,A>CandA>BUC

|
|
=

AN(AUBUC)=AnN

a contradiction.
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That is the poset V is forbidden in G.
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That is the poset V is forbidden in G.

By symmetry, the poset A is also forbidden in G.
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That is the poset V is forbidden in G.
By symmetry, the poset A is also forbidden in G.

Theorem (K-Tarjan, 1981)

La(n,V,A) = 2 (Tnjlj)

2
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That is the poset V is forbidden in G.
By symmetry, the poset A is also forbidden in G.

Theorem (K-Tarjan, 1981)

La(n,V,A) = 2 (Tnjlj)

2

Hence

1 —
Flertaglg sty ()

1

7]

)
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Theorem (Katona-D.T. Nagy 2014+) If v > 4 then

2”—1+%(L7§J> < f(n,1,v) < 2“‘%%(@) +
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Theorem (Katona-D.T. Nagy 2014+) If v > 4 then

2”—1+%(L7§J> < f(n,1,v) < 2“‘%%(@) +

Proof uses forbidden
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Theorem (Katona-D.T. Nagy 2014+) If v > v > 2,v > 3 then

(300 s
(550 ),

Proof uses forbidden
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Theorem (Katona-D.T. Nagy 2014+) Let 1 < u < v and suppose that the
family 7 c (") is a (u, v)-union—intersecting family then

n—1
< _
\F|_<k_1>+u 1

holds if n > n(k,v).
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Theorem (Katona-D.T. Nagy 2014+) Let 1 < u < v and suppose that the
family 7 c (") is a (u, v)-union—intersecting family then

n—1
< —1
|F| < (k_1>+u

holds if n > n(k,v).

Is there an Ahlswede-Khachatrian theorem also here?
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